2. [7 points]

a. [4 points] A population of fleas takes residence at the nearby I-Love-Functions Dog Hotel (oh no!) and the population grows exponentially for the first couple of days. At $t=2$ hours after the infestation started, the population is 1000 fleas. By $t=6$ hours after it started, the population is 2000 fleas. Write a formula for $P(t)$, the number of fleas t hours after the infestation started.
Show all work. Your final formula should include parameters in their EXACT form.

Solution: We know points on our function: $P(2)=1000$ and $P(6)=2000$. We also know that P is, for a while at least, an exponential function, so of the form: $P(t)=a b^{t}$, where a and b as as-of-yet unknown parameters. We can use the two point we know to set up two equations with two unknown parameters a, b :

$$
\begin{aligned}
& 2000=a \cdot b^{6} \\
& 1000=a \cdot b^{2}
\end{aligned}
$$

One way to work with these equations and solve for one of the paramaters is to divide one equation by the other. Doing this we get:

$$
2=b^{4}
$$

So $b=2^{\frac{1}{4}}$. We can plug this back into either equation to solve for the value of a :

$$
\begin{gathered}
1000=a \cdot\left(2^{\frac{1}{4}}\right)^{2} \\
1000=a \cdot 2^{\frac{1}{2}}=a \sqrt{2} \\
a=\frac{1000}{\sqrt{2}}
\end{gathered}
$$

Putting these values back in for the parameters of $P(t)$ we get the final formula below.

$$
P(t)=\frac{1000}{\sqrt{2}}\left(2^{\frac{1}{4}}\right)^{t}
$$

b. [3 points] Last year a population of fleas also took up residence at the hotel and their population, as a function of hours since their arrival, was given by:

$$
Q(t)=500\left(1.22^{t}\right)
$$

By what percent did this population increase each hour?

Solution: We are trying to find the value of t such that: $1500=500\left(1.22^{t}\right)$ We can solve this as follows:

$$
\begin{aligned}
1500 & =500\left(1.22^{t}\right) \\
3 & =1.22^{t} \\
\ln (3) & =\ln \left(1.22^{t}\right) \\
\ln (3) & =t \ln (1.22) \\
\ln (3) / \ln (1.22) & =t \\
5.5248 & \approx t
\end{aligned}
$$

