3. [8 points] Traditionally, it has been assumed that a D year-old dog is the same biological age as a $7 D$ year-old human. So a 3 year-old dog (in actual years) has aged as much as a 21 year-old human.
However, scientists have found a new aging formula for Labrador retrievers that takes specific biological aging markers into account. The new formula claims that a D year-old Labrador retriever (in actual years) has aged as much as a human who is

$$
H=f(D)=15 \ln (D)+31 \text { years old }
$$

One strange thing about this formula they came up with is that it doesn't go through the point $(0,0)$ as we'd expect it to. In fact, we can't plug in 0 to this formula at all!
a. [2 points] Explain in one sentence why we can't plug $D=0$ into this formula.

Explanation:

Solution: The domain of $\ln (D)$ does not include 0 , so we can't plug $D=0$ into this formula. (This was enough explanation for full credit on the exam.)
(For further thought:) The reason the domain doesn't include 0 is because \ln is the inverse of the exponential function, and 0 isn't in the range of e^{H}. That is, there is no value H such that $e^{H}=0$.
b. [3 points] According to this formula, at what age (in real years) will a dog be biologically equivalent to a newborn baby $(H=0)$?
Show all work. Give your final answer in decimal form, NOT exact form.

Solution: You would expect that a 0 -year old (newborn) dog would be equivalent to a 0 -year old human (newborn). However, as we saw above, the formula doesn't actually go through the point $(0,0)$ as we'd expect. In this question, we need to find the value of D such that: $0=15 \ln (D)+31$. We can solve this algebraically:

$$
\begin{aligned}
0 & =15 \ln (D)+31 \\
-31 & =15 \ln (D) \\
\frac{-31}{15} & =\ln (D) \\
e^{\frac{-31}{15}} & =D
\end{aligned}
$$

Putting this in decimal form using a calculator, we get that $D \approx 0.1266$. One way to interpret this would be that when a dog is 0.1266 years old, it is biologically equivalent to a newborn human. (It makes sense that this number is small!)

$$
D=_\quad 0.1266 \quad \text { years }
$$

This problem continues on the next page.
c. [3 points] Now considering the same function without its context: which of the graphs below could be the graph of

$$
f(D)=15 \ln (D)+31 ?
$$

Circle the correct graph or NONE.

None of these graphs could represent the function $f(D)$.

Solution: The graph of $f(D)$ is related to the graph of $\ln (D)$. It is the original graph stretched vertically, then shifted up. Neither of these changes affect the position of the original vertical asymptote of $D=0$, so the only possible graph is the one in the upper left, which is the same basic shape as the graph $\ln (D)$ function, with the vertical asymptote still at $D=0$.
The upper right graph is a shift of e^{D} (not a \ln function at all), and the two lower graphs are $\ln (D)$ functions that include a shift right or left.

