MATH 115 — FIRST MIDTERM EXAM
October 13, 2004

NAME:

INSTRUCTOR:

1. Do not open this exam until you are told to begin.

SECTION NO:

2. This exam has 10 pages including this cover. There are 10 questions.

3. Do not separate the pages of the exam. If any pages do become separated, write your name on them

and point them out to your instructor when you turn in the exam.

4. Please read the instructions for each individual exercise carefully. One of the skills being tested on
this exam is your ability to interpret questions, so instructors will not answer questions about exam

problems during the exam.

5. Show an appropriate amount of work for each exercise so that the graders can see not only the answer

but also how you obtained it. Include units in your answers where appropriate.

6. You may use your calculator. You are also allowed 2 sides of a 3 by 5 note card.

7. If you use graphs or tables to obtain an answer, be certain to provide an explanation and sketch of

the graph to make clear how you arrived at your solution.

8. Please turn off all cell phones and remove all headphones.

PROBLEM | POINTS SCORE

1 12
2 9
3 6
4 4
) 9
6 11
7 10
8 14
9 12
10 13

TOTAL 100




1. (2 points each) Circle “True” or “False” for each of the following problems. Circle “True” only
if the statement is always true. No explanation is necessary.

(a) log ™! (x) = &

True False

(b) If a function is continuous at a point a, then it must also be differentiable at a.

True False

(c) Suppose f is a continuous function on the interval [5,8] and that f(5) = —2 and f(8) = 3.
Then f has a zero on the interval (5, 8).

True False

=7 .
(d) i:r% - exists and is equal to -1.
True False
(e) Suppose f is a continuous function and f is concave up on the interval (—10, 10). If f/'(1) = —2,
it is possible that f’(4) = —3.
True False

(f) Suppose f is a continuous function, f(1) = 6, and f’(x) > 0 for all  between 0 and 5. Then
it is possible that f(4) = 6.

True False



2.(9 points) On the axes below, sketch a graph of a single function, g, with all of the following
properties.

e g(=2)=9(2) =1
e J(x)=0forx < —2and z > 2
e g(z) <0for —2< <2

li = d li =—
o z_}r_n%g(;r) oo and lim g(x) 00

e ¢"(z) >0for —2<z<0

o ¢"(z) <0for0 <z <2




[No explanations necessary on this page.]

3. (6 points) A group of researchers in Costa Rica is studying the number of resplendent quetzals
(these are birds) that nest in Monteverde Cloud Forest Preserve each year. The function f gives
the number of quetzals the researchers count in the park on day t. Write an expression involving
f that models each of the situations (a)-(c) below.

(a) After determining f(t), the researchers discover they forgot to include an area of the park
that houses 50 quetzals year round. Write an expression representing the number of quetzals the
researchers should use for their count.

(b) The number of visitors to the park is a function of the number of quetzals in the park.
Suppose the function is given by g(q) where ¢ is the number of quetzals in the park. Write an
expression that gives the number of visitors to the park on day ¢, based on the information that
the researchers have.

(c) The researchers discover another sloppy calculation. They had speculated that on day T they
would count the maximum number of quetzals. They found that the maximum quetzal count
actually took place in the park 5 days earlier than they had anticipated. Find a formula for the
maximum count, M, in terms of day 7.

4. (4 points) The volume of a cylinder of radius r and height h is given by V = 7r2h. If 6
times the height plus 2 times the radius must equal 36, determine a formula for the volume of the
cylinder in terms of the radius.



5. (9 points) The number of socks you own decreases according to the number of loads of laundry
you've done since the beginning of the school year. After your first load of laundry you have
10 pairs of socks remaining and after 20 loads you are down to your last pair of socks. Find an
exponential function that models this situation, and approximate the number of pairs of socks
that you had when you started the semester. Interpret your approximation into a reasonable
answer, and express your answer in a sentence. [Show your work!]



6. (11 points) The graph of a continuous differentiable function f is given below. Use the graph
to answer the following. No explanation necessary.

(a) List all labelled points (if any) where f’ and f” are both positive.

(b) List all labelled points (if any) where f" and f” are both negative.

(c) List all labelled points (if any) where f and f’ are both positive.

(d) List all labelled points (if any) where f and f’ are both both negative.

(e) List all labelled points (if any) where at least two of f, f’, f" are zero.



7. (10 points) For this problem f is differentiable everywhere.

(a) Write the limit definition of the derivative of the function f at the point a.

(b) On the graph below, show how the average rate of change of f between x = a and x =a+ h
is related to the derivative at the point a. Give a brief explanation of your illustration including
how the limit as h — 0 is demonstrated in your picture.

U @

(c) Write the limit definition for f/(2) if f(z) = €5"2®*. [You do not need to find the limit or
approximate f'(2).]



8. (14 points) As Sweetest Day (October 16th) approaches, millions of Americans flock to stores
to buy their special someone a card. The number of cards sold can be approximated by the
continuous function ¢ graphed below where ¢(t) gives the number of cards sold on day ¢ and ¢ = 1
corresponds to October 1.

Y

1 7 16 23 31

(a) Are there any t values where the function may not be differentiable? Explain.

(b) Explain the concavity of the graph between October 1 and October 16 in the context of this
problem.

(c) If on October 1 there are 30,000 cards sold and on October 23 there are 25,000 cards sold,
what is the average rate of change of ¢(t) over this time? Express your final answer in sentence
form and in the context of this problem.

(d) How many cards were sold on October 7?7 Show your work.



9. (12 points) As fall progresses the trees in the Arboretum gradually change color. The function
f gives the percentage of leaves on a particular tree that have begun to change colors as a function
of the number of days since September 30. (October 1st corresponds to ¢t = 1.) All answers should
be in complete sentences.

(a) Give a practical interpretation in everyday terms describing what f(10) = 15 means in the
context of this problem.

(b) Give a practical interpretation for what f/(15) = 9 means in the context of this problem.

(c) Give a practical interpretation for what f~!(3) = 6 means in the context of this problem.

(d) Give a practical interpretation describing what (f~!)’(40) = 0.5 means in the context of this
problem.



10

10. (13 points) The traffic on US-23 between Brighton and Ann Arbor is stop and go every
weekday morning. I merge onto US-23 South at Brighton travelling 35 miles per hour. The traffic
is bad and I must immediately slow down, finally coming to a stop 2 miles after I got on the
highway. I am able to speed right up again, and I reach my maximum speed of 70 miles per hour
six miles after I merged onto US-23. There are again traffic problems and I must slow again,
coming to a stop 4 miles after I reached my peak speed. Suppose my speed continues in the same
pattern until I reach the Ann Arbor exit, 13 miles after I merged onto the highway at Brighton.

(a) Assume that my speed may be modelled by a trigonometric function and sketch a graph of
my speed as I travel south on US-23. Let the horizontal axis represent my distance from the
Brighton entrance to the highway. Be sure to appropriately label the axes.

(b) Determine a trigonometric function, v, giving my speed as a function of d, my distance from
Brighton.

(c) What was my speed when I reached Ann Arbor?

(d) What are the units of v'?



