
MATH 115 –FIRST MIDTERM

October 7, 2008

NAME:

INSTRUCTOR: SECTION NUMBER:

1. Do not open this exam until you are told to begin.

2. This exam has 10 pages including this cover. There are ?? questions.

3. Do not separate the pages of the exam. If any pages do become separated, write your name on them and
point them out to your instructor when you turn in the exam.

4. Please read the instructions for each individual exercise carefully. One of the skills being tested on this
exam is your ability to interpret questions, so instructors will not answer questions about exam problems
during the exam.

5. Show an appropriate amount of work for each exercise so that the graders can see not only the answer but
also how you obtained it. Include units in your answers where appropriate.

6. You may use your calculator. You are also allowed two sides of a 3 by 5 notecard.

7. If you use graphs or tables to obtain an answer, be certain to provide an explanation and sketch of the
graph to show how you arrived at your solution.

8. Please turn off all cell phones and pagers and remove all headphones.

PROBLEM POINTS SCORE

1 14

2 15

3 12

4 10

5 12

6 10

7 9

8 10

9 8

TOTAL 100
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1. In 1999, a population of deer (a type of large animal) was set free on a previously uninhabited
island in Lake Superior, in an attempt to establish a permanent population of deer on the island.
The population of deer grew over time. Population measurements were made each year, as
shown in the following table:

Year 1999 2000 2001 2002

Population 20 23 27 31

Let P (t) be a function that gives the population of deer on the island as a function of time, t,
measured in years since 1999.

(a) (2 points) In the context of this problem, give a practical interpretation for P (40).

(b) (2 points) In the context of this problem, give a practical interpretation for P−1(40).

(c) (3 points) Assume that the deer population at time t is represented by an exponential func-
tion P (t) = P0a

t. Find P0 and a, and express your answer as a function.

(d) (2 points) According to your answer to part (c) what is the annual percent growth rate of
the deer population?

(e) (3 points) Use the table above to estimate (P−1)′(27). Do not assume that the deer popula-
tion is modeled by the formula from part (c).

(f) (2 points) Give a practical interpretation in the context of this problem for (P−1)′(27).



3

2. Before Hurricane Ike hit Galveston, TX, on September 10, 2008, there were reports of waves up
to 26 ft. tall, with offshore buoys recording 14 seconds between waves. The water level along the
seawall was already 4 feet above normal sea level, and the city of Galveston was concerned that
the storm surge might overwhelm the seawall. Let W (t) be the trigonometric function giving
the height of the water above sea level at time t, where t is measured in seconds since one of the
waves crashed against the seawall. Assume the minimum height is 4 feet and the waves surge
from and return to that level.

(a) (5 points) On the axes below, sketch two periods of W (t). Be sure to include important axes
markings and labels.

t

W (t)

(b) (7 points) Find a formula for W (t).

(c) (3 points) For what t value, 0 ≤ t ≤ 14, is the wave height decreasing the fastest?
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3. (3 pts each–no partial credit) The following problems are to be considered independent of each
other. For each problem, circle all the statements that are correct.

(a) Let C(r) represent the total cost of paying off a car loan borrowed at an interest rate of r%
per year. Then:

• The units of C ′(r) are $/year.

• The expression C ′(5) = A (with units) represents the rate of change of the total cost of
the car loan.

• The expression C ′(5) = A (with units) indicates that if the interest rate increases from
5% to 6%, the total cost of the loan would be approximately C(5) + A.

• The expression C ′(5) (with units) indicates that if the interest rate increases by 5%, then
the total cost of the loan increases by about C ′(5).

• The expression C ′(5) (with units) indicates that if the interest rate increases from 5% to
6%, the total cost of the loan increases by about C ′(5).

• The sign of C ′(5) cannot be determined from the context of the information given.

(b) If the figure below shows position as a function of time for two sprinters running in parallel
lanes, then:

• At time A, both sprinters have the same velocity.

• Both sprinters continually increase their velocity.

• Both sprinters run at the same velocity at some time before A.

• At some time before A, both sprinters have the same acceleration.

(c) Let f and g be differentiable functions. Assume f is
an even function and g is an odd function. Then:

• g′ is an even function

• the composition, f(g(x)), is an odd function.

• h(x) = f(x)g(x) is an odd function.

(d) Suppose that f ′′(x) > 0 everywhere. Then:

• f ′(x) is increasing.

• f(b) > f(a) whenever a < b.

• f ′(x) < 0.

t

f(t)

A

Figure for part (b)
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4. The speed of sound, v(T ) (in miles per hour), at an ambient temperature, T (in degrees Farenheit),
is given by:

v(T ) = 740 + 0.4T.

Objects which travel faster than the speed of sound create sonic booms. However, the ambient
temperature T in the Troposphere also decreases with height h (in miles) from Earth’s surface
according to the equation

T (h) = −26h + T0,

where T0 is the temperature at the surface.

(a) (3 points) Find a formula which will give the speed of sound S as a function of height h,
assuming the surface temperature is 68◦F.

(b) (4 points) Find S′(1) and interpret the meaning of S′(1) in the context of this problem.

(c) (3 points) While on a flight from Ann Arbor to Chicago on a beautiful 68◦ day, the pilot’s
instruments measure the outside temperature to be 0◦. What is the plane’s altitude, and
how fast would the pilot need to fly at this altitude to create a sonic boom?
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5. The graph below shows an approximation to the stock price, P = f(t) in dollars, of Lehman
Brothers Inc. (LEH) with t measured in months since the stock’s highest point in February 2007
to the company’s ultimate bankruptcy in September 2008 (t=19).

t

f(t)

(a) (2 points) Explain why f is invertible on the indicated domain.

(b) (3 points) Interpret, in the context of this problem, f−1(5).

(c) (4 points) If dP

dt
|t=16 = −5 and f(16) = 25, find an equation of the line tangent to the curve

at t = 16.

(d) (3 points) Using part (c), what month would your tangent line have predicted LEH’s stock
price would reach zero?
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6. (2 points each) Google Trends is an online website which tracks how frequently certain search
strings are entered into Google. Entering the term “pumpkin” produces a graph similar to the
graph below.

(time in months)

Google Trend for “pumpkin”

Not surprisingly, this graph is basically periodic over a 12-month period. Suppose we call this
function P (t), where the horizontal axis represents time, t in months since December (so t = 1
is January of any given year). The values of P (t) represent how often a term is searched for,
relative to the total number of searches. The spike in the pumpkin graph, again not surprisingly,
comes around t = 10 each year. (We figure the second, smaller spike represents queries about
what to do with rotting pumpkins....) Other trends are seasonal as well–e.g., “summer camps.”
On the other hand, some searches have a quick peak and die forever (or at least for longer than a
year)–e.g., “Vice Presidential debates.”

Assume that the peak in the graph above occurs at the point (10, 100). Use this information to
determine the coordinates of the peak for the following searches that have similar patterns but
peak at different points. On each line below, give the coordinates of the peak in the new function,
given that function’s relationship to the function P .

(a) The peak for the function C if C(t) = 10P (t).

(b) The peak for the function K if K(t) = P (t+2).

(c) The peak for the function G if G(t) = P (t)+2.

(d) The peak for the function H if H(t) = 3P (t−5)+1.

(e) In the context of this problem, does P (−10) make sense? If so, what would that mean? If
not, explain why not.
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7. (9 points) A continuous, differentiable function defined for all x has all of the following proper-
ties:

• f ′(x) = 0 at x = 0 and x = 3

• f(3) = 0

• f ′(−1) = −2

• f ′ is increasing for x < 2

• f ′ ≥ 0 for x > 0

• lim
x→−∞

f(x) = ∞

(a) (3 points) Sketch a possible graph of f

x

f(x)

(b) (2 points) How many zeroes does f have? Explain your reasoning.

(c) (2 points) What can you say about the location of the zeroes? Explain your reasoning.

(d) (2 points) Is it possible that f ′(−2) = −1? Explain your reasoning.
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8. The function L(x) =
1

ln(x)
is differentiable over its domain.

(a) (2 points) What is the domain of L?

(b) (4 points) Write the formula for the derivative of L at x = a using the limit definition of the
derivative.

(c) (4 points) Given
dL

dx
|x=2 = −1.0407 and

dL

dx
|x=2.5 = −.4764 and given that the derivative is

monotonic (meaning the derivative does not change behavior from decreasing to increasing
or vice versa) for all x > 1, what does this information tell you about the graph of L for x

near 2? Explain your reasoning using words and symbols (i.e., not by drawing a graph).
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9. San Francisco’s famous Golden Gate bridge has two towers which stand 746 ft. above the water,
while the bridge itself is only 246 ft. above the water. The last leg of the bridge, which connects
to Marin County, is 2,390 ft. long. The suspension cables connecting the top of the tower to the
mainland can be modeled by an exponential function. Let H(x) be the function describing the
height above the water of the suspension cable as a function of x, the horizontal distance from
the tower.

The Mainland

746 ft.

246 ft.

2,390 ft.

Top of the Tower

(a) (4 points) Find a formula for H(x).

(b) (4 points) The engineers determined that some repairs are necessary to the suspension ca-
bles. They climb up the tower to 400 ft above the bridge, and they need to lay a horizontal
walking board between the tower and the suspension cable. How long does the walking
board need to be to reach the cable?


