Math 115 - Second Midterm

November 24, 2009

Name: \qquad
Instructor: \qquad Section: \qquad

1. Do not open this exam until you are told to do so.
2. This exam has 9 pages including this cover. There are 8 problems. Note that the problems are not of equal difficulty, so you may want to skip over and return to a problem on which you are stuck.
3. Do not separate the pages of this exam. If they do become separated, write your name on every page and point this out to your instructor when you hand in the exam.
4. Please read the instructions for each individual problem carefully. One of the skills being tested on this exam is your ability to interpret mathematical questions, so instructors will not answer questions about exam problems during the exam.
5. Show an appropriate amount of work (including appropriate explanation) for each problem, so that graders can see not only your answer but how you obtained it. Include units in your answer where that is appropriate.
6. You may use any calculator except a TI-92 (or other calculator with a full alphanumeric keypad). However, you must show work for any calculation which we have learned how to do in this course. You are also allowed two sides of a $3^{\prime \prime} \times 5^{\prime \prime}$ note card.
7. If you use graphs or tables to find an answer, be sure to include an explanation and sketch of the graph, and to write out the entries of the table that you use.
8. Turn off all cell phones and pagers, and remove all headphones.
9. Use the techniques of calculus to solve the problems on this exam.

Problem	Points	Score
1	10	
2	8	
3	14	
4	12	
5	12	
6	14	
7	14	
8	16	
Total	100	

1. [10 points] For each of the following statements, circle True if the statement is always true and circle False otherwise.
a. [2 points] If $j^{\prime}(x)$ is continuous everywhere and changes from negative to positive at $x=a$, then j has a local minimum at $x=a$.

True False
b. [2 points] If f and g are differentiable increasing functions and $g(x)$ is never equal to 0 , then the function $h(x)=\frac{f(x)}{g(x)}$ is also a differentiable increasing function.

True
False
c. [2 points] If k is a differentiable function with exactly one critical point, then k has either a global minimum or global maximum at that point.

True False
d. [2 points] If F and F^{\prime} are differentiable functions and $F^{\prime \prime}(2)=0$, then F has a point of inflection at $x=2$.

True False
e. [2 points] If f is a differentiable function with $f(a)=b$ and f^{\prime} is always positive, then $f^{\prime}(a)\left(\left(f^{-1}\right)^{\prime}(b)\right)=1$.
2. [8 points] On the axes provided below, sketch the graph of a function f satisfying all of the following:

- f is defined and continuous on $(-\infty, \infty)$.
- f has exactly three critical points.
- f has a local maximum at $x=2$.
- f has a point of inflection at $x=-1$.
- f has a global minimum at $x=0$.
- $f^{\prime \prime}(x)>0$ for $x>3$.

Remember to clearly label your graph. Please point out the key features.

3. [14 points] Use the following table and graph to answer the questions below. Note that the graph of g passes through the points $(-2,2),(0,0)$, and $(2,4)$. All answers should be exact.

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	0	1	-1	2	-1	-3	2	4	1
$f^{\prime}(x)$	-1	1	-2	3	-2	2	0	3	2

a. [4 points] Let $k(x)=g(x) \arctan (f(x))$. Compute $k^{\prime}(-2)$ or explain why it does not exist.
b. [4 points] Let $a(x)=\frac{(f(x))^{3}}{3 g(x)}$. Compute $a^{\prime}(1)$ or explain why it does not exist.
c. [6 points] Let $h(x)=g(g(x))$.

Find all local maxima and minima of the function h on the interval $(-4,4)$.
Then find the global maximum and global minimum values of h on the interval $[-4,4]$.
4. [12 points] In preparation for the holidays, a local bookstore is planning to sell mugs of a variety of shapes. Suppose that the amount of liquid in a "UM" mug if filled to a depth of h cm is $L(h)=U h\left(3 M^{2}-3 M h+h^{2}\right) \mathrm{cm}^{3}$ for $U, M>0$.
a. [4 points] Find and classify any critical points of L on the interval $(0,5 M)$.
b. [2 points] Determine any points of inflection of L on the interval $(0,5 M)$.
c. [6 points] Suppose you are pouring coffee into a "UM" mug at a rate of $15 \mathrm{~cm}^{3}$ per second. At what rate is the depth of the coffee in the mug changing when the coffee reaches a depth of 4 cm in the mug?
5. [12 points] The questions (a)-(d) refer to the functions whose graphs are depicted below.

For each question, circle the one best answer.
Note that these questions are independent of each other; information provided in one should NOT be used in the others. No explanations are necessary.
a. [3 points] Suppose $f(x)=g^{\prime}(x)$ for some differentiable function g. Then
i. g has a local minimum at $x=4$.
ii. g has a local maximum at $x=4$.
iii. g has an inflection point at $x=4$.
iv. None of the above
b. [3 points] If a function k has a local maximum at $x=2$, which of the functions above could be the second derivative of k ?
i. f
ii. h
iii. j
iv. m
v. None of these
c. [3 points] Suppose the average cost (in dollars per shirt) of printing a new style of maize U of M Math Department t-shirts is smallest when 400 t -shirts are printed. One of the functions graphed above gives the total cost of printing x hundred maize U of Mt -shirts. Which of the graphs represents this function?
i. f
ii. h
iii. j
iv. m
d. [3 points] Suppose each of the graphs represents the derivative of a function. Which is (are) the derivative(s) of a function whose global minimum for $0 \leq x \leq 5$ occurs at $x=0$?
$\begin{array}{lll}\text { i. } h \text { and } j & \text { ii. } m \quad \text { iii. None of the graphs } \quad \text { iv. All of the graphs }\end{array}$
6. [14 points] The force F due to gravity on a body at height h above the surface of the earth is given by

$$
F(h)=\frac{m g R^{2}}{(R+h)^{2}}
$$

where m is the mass of the body, g is the acceleration due to gravity at sea level $(g<0)$, and R is the radius of the earth.
a. [3 points] Compute $F^{\prime}(h)$.
b. [3 points] Compute $F^{\prime \prime}(h)$.
c. [5 points] Find the best linear approximation to F at $h=0$.
d. [3 points] Does your approximation from part (c) give an overestimate or an underestimate of F ? Why?
7. [14 points] The Kampyle of Eudoxus is a family of curves that was studied by the Greek mathematician and astronomer Eudoxus of Cnidus in relation to the classical problem of doubling the cube. This family of curves is given by

$$
a^{2} x^{4}=b^{4}\left(x^{2}+y^{2}\right) .
$$

where a and b are nonzero constants and $(x, y) \neq(0,0)-i . e .$. the origin is not included.
a. [5 points] Find $\frac{d y}{d x}$ for the curve $a^{2} x^{4}=b^{4}\left(x^{2}+y^{2}\right)$.
b. [5 points] Find the coordinates of all points on the curve $a^{2} x^{4}=b^{4}\left(x^{2}+y^{2}\right)$ at which the tangent line is vertical, or show that there are no such points.
c. [4 points] Show that when $a=1$ and $b=2$ there are no points on the curve at which the tangent line is horizontal.
8. [16 points] Some airlines have started offering wireless internet access during flight. The company WiFi Up High (WFUH) would like to enter the market and begin working with airlines to offer such service. WFUH will charge passengers based on the amount of time the passenger uses the service during flight.
Preliminary research indicates that during NW flight 2337 (which flies from Detroit to Los Angeles), the number of hours of wifi that will be used by passengers at a price of p dollars per hour is given by the function

$$
h(p)=\frac{45000}{149+e^{0.4 p}} .
$$

Since offering wifi to its customers is likely to increase business for the airline, WFUH also plans to charge the airline a flat fee of a dollars per flight on which the service is offered.
a. [3 points] If WFUH offers its service to passengers at a price of $\$ 2$ per hour, what will be its expected revenue from one NW 2337 flight?
b. [8 points] Use calculus to determine how much WFUH should charge passengers per hour of usage in order to maximize its revenue from NW flight 2337. (Round your answer to the nearest \$0.01.)
c. [5 points] Suppose that WFUH initially decides to charge $\$ 12.50$ per hour of use. Note that $h(12.50)$ is approximately 151 . Suppose the marginal cost to WFUH when 151 hours of wifi are being used is $\$ 5$ per hour of use. In order to increase its profit, should WFUH raise or lower the price it is charging per hour of use on NW flight 2337? Explain.

