On my honor, as a student, I have neither given nor received
unauthorized aid on this academic work.

Initials:
Math 115 — Second Midterm
November 17, 2015
Your Initials Only: _ Your U-M ID # (not unigname):
Instructor Name: Section #:

1. Do not open this exam until you are told to do so.

2. This exam has 10 pages including this cover. There are 9 problems.

Note that the problems are not of equal difficulty, so you may want to skip over and return
to a problem on which you are stuck.

3. Do not separate the pages of this exam. If they do become separated, write your initials (not
name) on every page and point this out to your instructor when you hand in the exam.

4. Note that the back of every page of the exam is blank, and, if needed, you may use this
space for scratchwork. Clearly identify any of this work that you would like to have graded.

5. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

6. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it.

7. The use of any networked device while working on this exam is not permitted.

8. You may use any calculator that does not have an internet or data connection except a
TI-92 (or other calculator with a “qwerty” keypad). However, you must show work for any
calculation which we have learned how to do in this course. You are also allowed two sides of
a 3" x 5" note card.

9. For any graph or table that you use to find an answer, be sure to sketch the graph or write
out the entries of the table. In either case, include an explanation of how you used the graph
or table to find the answer.

10. Include units in your answer where that is appropriate.

11. Turn off all cell phones, smartphones, and other electronic devices, and remove all
headphones and smartwatches.

12. You must use the methods learned in this course to solve all problems.

Problem Points Score
1 12
14
11
10
12
11
6
10
9 14
Total 100
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1. [12 points] The graphs of two functions, h(p) and v(p), are shown below.

The following questions concern the functions B, W, and @) defined as follows:

BO)= o W)= hA), and Q)=

Assume that the first and second derivatives of v(p) are defined everywhere, i.e. that both v
and v are differentiable on (—o0,00). Note that the graph of h(p) consists of line segments
whose endpoints have integer (whole number) coordinates. Find the exact value of each of
the quantities in a. and b. below. If the value does not exist, write DOES NOT EXIST.
Remember to show your work carefully.

a. [4 points| B'(—1)

Answer: B'(-1)=
b. [4 points] W’(2)

Answer: W/'(2) =

c. [4 points] On the interval —2 < p < 2, is Q(p) always increasing, always decreasing, or
neither? Show your work and explain your reasoning.
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2. [14 points] Suppose f(x) is a function defined for all real numbers whose derivative and

second derivative are given by

Y
fl(@) = (x—4)%@+2)** and f”(x):(11x+10)(95 4)

3(z 4 2)Y/3
a. [7 points] Find all critical points of f(z) and all values of x at which f(z) has a local

extremum. Use calculus to find and justify your answers, and be sure to show enough
evidence to demonstrate that you have found all local extrema. For each answer blank

below, write NONE if appropriate.

Answer: Critical point(s) at z =

Local max(es) at x = Local min(s) at z =

b. [7 points] Find the z-coordinates of all inflection points of f(x). If there are none, write
NONE. Use calculus to find and justify your answers, and be sure to show enough
evidence to demonstrate that you have found all inflection points.

Answer: Inflection point(s) at =
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3. [11 points] For each of the problems below, circle all of the correct answers. If none of the
answer choices provided are correct, circle NONE OF THESE.

B +8t2+6t ift<c

a. |4 points| Let  s(t) =
4p ] ®) {4t2+2t ift>c

For which of the following values of ¢ is s(t) differentiable on (—o0, c0)?

i =2
.. 2
. —=

3
iii. 0
.3
v, —
2
v. 3

vi. NONE OF THESE

b. [4 points] Suppose f and f’ are differentiable for all real numbers. Let L(z) be the local
linearization of f at x = 3. Suppose f’(z) < 0 for all 2.5 < x < 3.5 and f”(x) > 0 for all
2.5 < x < 3.5. Which of the following must be true?

i. L(3) > f(3) iv. L(3.1) > f(3.1) vii. L(3.9) > £(3.9)
ii. L(3) = £(3) v. L(3.1) = f(3.1) viii. L(3.9) = £(3.9)
iii. L(3) < f(3) vi. L(3.1) < f(3.1) ix. L(3.9) < f(3.9)

X. NONE OF THESE

c. [3 points] Suppose that f is a differentiable function on (—oo, 00) with no critical points,

that both f and f’ are invertible, and that f(4) = 7. Which of the following statements
must be true?

i. f is an increasing function. V. (f’)_1(4) = (fll),(?)
ii. f is a decreasing function. 1
. n—1 _
iii. f'(4) = L D= 0
Y7 g —1y/
X vil. f/(4)(f77)'(4) = 1.
iv. f'(4) = ) viil. (f/(7))"" = (fH(7).

ix. NONE OF THESE
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4. [10 points|] A function f(x) is defined and differentiable on the interval 0 < z < 10. In
addition, f(z) and f’(z) satisfy all of the following properties:

e f/(x) is continuous on the interval 0 < z < 10.

o /(1) =2

e f/'(z) is differentiable on the interval 1 < z < 5.
e f(x) is concave up on the interval 3 < z < 5.

e f(z) has a local minimum at = = 4.

e f(x) is decreasing on the interval 6 < z < 8.

e f(z) has an inflection point at x = 7.

e f'(z) is not differentiable at z = 9.

On the axes provided below, sketch a possible graph of f/(x) (the derivative of f(x)) on the
interval 0 < =z < 10.
Make sure your sketch is large and unambiguous.

Graph of y = f'(x) ‘
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5. [12 points] In Srebmun Foyoj, Maddy and Cal are eating lava cake. Let T'(v) be the time (in
seconds) it takes Maddy to eat a v cm? serving of lava cake. Assume T'(v) is invertible and
differentiable for 0 < v < 1000. Several values of T'(v) and its first and second derivatives are

given in the table below.
10 15 60 | 100 | 150 | 200 | 300

v

T(v) | 11 | 22 | 84 | 194 | 393 | 513 | 912
T'(v) | 24 | 1.9 | 1.8 | 36 | 3.7 | 09 | 175
T”(v) | -0.11 | -0.08 | 0.05 | 0.04 | -0.04 | -0.05 | 0.59

Remember to show your work carefully.
a. [4 points] Use an appropriate linear approximation to estimate the amount of time it

takes Maddy to eat a 64 cm? serving of lava cake. Include units.

Answer:

b. [4 points] Use the quadratic approximation of 7'(v) at v = 200 to estimate 7°(205).
(Recall that a formula for the quadratic approximation Q(z) of a function f(x) at x = a

is Q(z) = f(a) + f'(a)(z — a) + L42(z — 0)?)

Answer: T(205) ~

c. [4 points] Let C(v) be the time (in seconds) it takes Cal to eat a v cm® serving of lava

cake, and suppose C(v) = T'(1/v). Let L(v) be the local linearization of C(v) at v = 100.
Find a formula for L(v). Your answer should not include the function names T or C.

Answer: L(v) =
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6. [11 points|

The engineer Elur Niahc has been commissioned to 0

build a park for the citizens of Srebmun Foyoj. The "

park will consist of a square attached to a rectangular w
dog park (as shown in the diagram on the right).

The fencing for the dog park (bold, dashed line) costs

$4 per linear meter, and the fencing for the three re- w
maining sides of the square portion of the park (bold,

solid line) costs $6 per linear meter.

a. [5 points] Assume that Elur spends $2400 on fencing. The resulting park will have width
w meters, and the length of the dog park will be £ meters, as shown in the diagram
above. Find a formula for ¢ in terms of w.

Answer: /=

b. [3 points] Let A(w) be the total area (in square meters) of the resulting park (including
the dog park) if the width is w meters and Elur spends $2400 on fencing. Find a formula
for the function A(w). The variable ¢ should not appear in your answer.

(Note: This is the function that Elur would use to find the value of w maximizing the
area of the park, but you should not do the optimization in this case.)

Answer: A(w) =

c. [3 points| In the context of this problem, what is the domain of A(w)?

Answer:
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7. [6 points] A curve C gives y as an implicit function of x. This curve passes through the point
(—2,1) and satisfies

dy B x? — y4
de  2xy3
a. [1 point] One of the values below is the slope of the curve C at the point (—2,1). Circle
that one value.

Answer: The slope at (—2,1) is

3 1 3 1 5 3 15
16 4 8 2 8 4 16

b. [5 points] One of the following graphs is the graph of the curve C. Which of the graphs
i-vi is it? To receive any credit on this question, you must circle your answer next to the
word “Answer” below.

Remember: To receive any credit on this question, you must circle your answer next to
the word “Answer” below.

Answer: 1. 1. 1ii. v. V. vi.
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8. [10 points] The citizens of Srebmun Foyoj have decided to put a bed of mumertxe flowers in
their new park. The floral density D (in flowers per square meter) of a flowerbed of area A
square meters is given by D = f(A). Formulas for f(A) and its derivative f/'(A) are given

below.

(A—0.5)(A—2)(A— 5))
eA '

A3 _ 4542 4 454 0.
f(A):30< > ej L 05>+15, and f’(A):—30<

a. [5 points] The citizens intend to make the area of the flowerbed between 1.5 and 3.5
square meters. What area A (with 1.5 < A < 3.5) should they make the flowerbed in
order to maximize the density of the flowers in the flowerbed? Use calculus to find and
justify your answer, and be sure to show enough evidence to demonstrate that the area

you find does indeed maximize the density of the flowers.

Answer: Maximum density when area A =

b. [5 points] Suppose instead that the citizens can make the flowerbed any area greater
than or equal to 1.5 square meters. What are the largest and smallest densities this
flowerbed could have? Use calculus to find your answer and be sure to show enough
evidence to demonstrate that you have found the minimum and maximum densities.

(For each answer blank below, write NONE if appropriate.)

Answer: Maximum density: D =

Answer: Minimum density: D =
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9. [14 points|
a. [8 points] Consider functions f satisfying all of the following conditions:
o f(x) is differentiable on the interval 0 < z < 8.

e The critical points of f(x) in the interval 0 < x < 8 are x = 2,4, and 6. (f(z) has no
other critical points in this interval.)

e The table below shows some values of f(z) and of its derivative f/(z).

x 1135 |7
flz)y | 3 16|11 0
") | =1]7] 7 |-1
For each of the statements below, decide whether the statement is true for ALL functions
f satisfying all of the conditions described above, for SOME of these functions f, or for
NONE of these functions f. Circle the one correct choice for each statement.

(i) f(x) has a local minimum at = = 2.

ALL SOME NONE

(ii) f'(3) > 0.

ALL SOME NONE

(iii) f(z) has a local maximum at z = 4.

ALL SOME NONE

(iv) There is exactly one value of a with 3 < a < 7 such that f(x) has a local maximum
at xr = a.

ALL SOME NONE

b. [6 points] Consider functions g satisfying all of the following conditions:
e g(z) and ¢'(z) are differentiable on the interval 12 < z < 18.
e The critical points of g(z) in the interval 12 < z < 18 are z = 14 and z = 16. (g(2)
has no other critical points in this interval.)

e The table below shows some values of g(z) and of its second derivative g”(z).

z 13|14 | 15|16 | 17
gz) | 8| 72 6|72
g'"(z)| T |-1[?]0]|7
For each of the statements below, decide whether the statement is true for ALL functions
g satisfying all of the conditions described above, for SOME of these functions g, or for
NONE of these functions g. Circle the one correct choice for each statement.

(i) g(z) has a local extremum at z = 14.

ALL SOME NONE
(i) ¢'(15) > 0.

ALL SOME NONE
(iii) g(z) has an inflection point at z = 16.

ALL SOME NONE



