
Math 115 — Final Exam

April 23, 2010

Name:

Instructor: Section:

1. Do not open this exam until you are told to do so.

2. This exam has 10 pages including this cover. There are 9 problems. Note that the problems
are not of equal difficulty, so you may want to skip over and return to a problem on which
you are stuck.

3. Do not separate the pages of this exam. If they do become separated, write your name on
every page and point this out to your instructor when you hand in the exam.

4. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

5. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it. Include units in your
answer where that is appropriate.

6. You may use any calculator except a TI-92 (or other calculator with a full alphanumeric
keypad). However, you must show work for any calculation which we have learned how to
do in this course. You are also allowed two sides of a 3′′ × 5′′ note card.

7. If you use graphs or tables to find an answer, be sure to include an explanation and sketch
of the graph, and to write out the entries of the table that you use.

8. Turn off all cell phones and pagers, and remove all headphones.

9. Use the techniques of calculus to solve the problems on this exam.

Problem Points Score

1 12

2 12

3 12

4 12

5 8

6 14

7 10

8 12

9 8

Total 100
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1. [12 points]
For the following statements, select True if the statement is ALWAYS true, and select False
otherwise. No explanations are required.

a. [2 points]

If f is a differentiable function and f(5.1)−f(5)
0.1 = −3,

then f ′(5) = −3.

True False

b. [2 points]
If g is a continuous function, then

∫ 20

1
g(x)dx =

∫
−100

1
g(x)dx +

∫ 20

−100
g(x)dx.

True False

c. [2 points]
If h is an odd function and is continuous everywhere, then h is invertible.

True False

d. [2 points]
If k is a differentiable function and is always concave up,

then k′(a) ≤
k(b) − k(a)

b − a
whenever a < b.

True False

e. [2 points]
If ℓ is a continuous function, then∫ 3

2
ℓ(t)dt ≤

∫ 4

2
ℓ(t)dt.

True False

f. [2 points]
Suppose m is a twice differentiable function. If m′′(5) = 0,
then m does not have an inflection point at x = 5.

True False
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2. [12 points]
Use the graph of the function f ′ and the table of values for the function g to answer the
questions below. Each problem requires only a small amount of work, but you must show it.

1 2 3 4 5 6

10

20

30 f ′(x)
x -20 -10 0 10 20 30

g(x) 0 4 0 -18 -56 -120

g’(x) 6 1 -10 -27 -50 -79

a. [3 points] Write a formula for the local linearization of g near x = 10 and use it to ap-
proximate g(10.1).

b. [3 points] Using the table, estimate g′′(−10).

c. [3 points] If f(3) = 30, find the exact value of f(1).

d. [3 points] Given that f(3) = 30, find the exact value of

∫ 3

1
g′(f(z))f ′(z)dz.

(Hint: use part (c).)



Math 115 / Final (April 23, 2010) page 4

3. [12 points]
Scott is having a graduation party, and his mom wants to order individual cakes for the guests.
Each cake is a right circular cylinder with radius R centimeters, height H centimeters, and
volume 250 cubic centimeters. In addition,

• there is a fixed cost of $3 per cake;

• the entire side of the cake will have maize icing with blue candy “M”s, which costs
$0.02 per square centimeter; and

• the entire top of the cake will have blue icing, which costs $0.01 per square centimeter.

Recall that the volume of a right circular cylinder with radius R and height H is V = πR2H.

a. [4 points] Find a formula for the cost C of one cake, in terms of its radius R.

b. [8 points] What radius and height should Scott’s mom choose for the cakes if she wishes
to minimize her costs? What is the minimum price for one cake? (To get credit, you must
fully justify your answer using algebraic work.)

radius = height = cost =
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4. [12 points]

a. [6 points] Using 4 equal subdivisions, find a Riemann sum which is an underestimate for

∫ 4

2
ln(x)dx.

Sketch a graphical representation of your Riemann sum on the axes below, and write
“LHS” or “RHS” next to your figure to indicate whether you are using a left-hand sum
or a right-hand sum. Write out the terms of the Riemann sum using exact values (no
calculator approximations). There is no need to simplify the sum.

1 2 3 4
x

∫ 4

2
ln(x)dx ≈

b. [3 points]

Show that

∫
ln(x)dx = x ln(x) − x + C, where C is a constant.

c. [3 points]

Using part (b), find the exact value of the integral

∫ 4

2
ln(x)dx.
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5. [8 points]
Suppose that the derivative of a continuous function H is given by the formula

H ′(t) =
et(t+1)(t − 3)(t + 450)

(4t − 100)
2

3

.

Find all values of t which are critical points of the original function H. Use the first derivative
test (and explain your work) to identify each critical point as a local maximum, local minimum,
or neither.
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6. [14 points]
Each graph below shows the position of a particle moving along the x-axis as a function of
time, for 0 ≤ t ≤ 5. The vertical scales are all the same. Using the position graphs, answer
the questions below. No work is required.

x(t)

particle A

5
t

x(t)

particle B

5
t

x(t)

particle C

5
t

Which one of the three particles (A,B,C)...

a. [2 points] has the greatest initial velocity?

b. [2 points] has zero acceleration?

c. [2 points] has the greatest average velocity?

d. [2 points] travels the greatest distance?

Each graph below shows the velocity of a particle moving along the x-axis as a function of time,
for 0 ≤ t ≤ 5. Positive velocity indicates that the particle is traveling to the right. Negative
velocity indicates travel to the left. The vertical scales are all the same. These are not the
same particles as above. Using the velocity graphs, answer the questions below. No work is
required.

v(t)

particle D

5
t

v(t)

particle E

5
t

v(t)

particle F

5
t

Which one of the three particles (D,E,F )...

e. [2 points] returns to its starting position when t = 5?

f. [2 points] has the greatest average velocity?

g. [2 points] ends up farthest to the left of where it started?
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7. [10 points] Suppose that f is an even function. A portion of f is graphed below.

f(x)

2 5
x

The area of the shaded region between x = 0 and x = 2 (with vertical stripes) is 3 units, and
the area of the shaded region between x = 2 and x = 5 (with horizontal stripes) is 8 units.
Find exact values for each of the following integrals. If it is not possible to find the exact value,
write “insufficient information”.

a. [2 points]

∫ 2

−2
f(x)dx

b. [2 points]

∫ 5

0
|f(x)|dx

c. [2 points]

∫ 1

0
f(2t)dt

d. [2 points]

∫ 8

5
f(t − 3)dt

e. [2 points]

∫ 2

5
9f(z)dz
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8. [12 points]
A train is traveling eastward at a speed of 0.4 miles per minute along a long straight track,
and a video camera is stationed 0.3 miles from the track, as shown in the figure. The camera
stays in place, but it rotates to focus on the train as it moves.
Suppose that t is the number of minutes that have passed since the train was directly north
of the camera; after t minutes, the train has moved x miles to the east, and the camera has
rotated θ radians from its original position.

b
−→

Train

b

Camera

x mi

0.3 mi

θ

a. [3 points] Write an equation that expresses the relationship between x and θ.

b. [4 points] Suppose that seven minutes have passed since the train was directly north of
the camera. How far has the train moved in this time, and how much has the camera
rotated?

c. [5 points] How fast is the camera rotating (in radians per minute) when t = 7?
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9. [8 points]
Suppose that the standard price of a round-trip plane ticket from Detroit to Paris, purchased
t days after April 30, is P (t) dollars. Assume that P is an invertible function (even though
this is not always the case in real life).

In the context of this problem, give a practical interpretation for each of the following:

a. [2 points] P ′(2) = 55

b. [2 points] P−1(690)

c. [2 points]

∫ 10

5
P ′(t)dt

d. [2 points]
1

5

∫ 10

5
P (t)dt


