
On my honor, as a student, I have neither given nor received
unauthorized aid on this academic work.

Initials:

Math 115 — Second Midterm
March 22, 2016

Your Initials Only: Your U-M ID # (not uniqname):

Instructor Name: Section #:

1. Do not open this exam until you are told to do so.

2. This exam has 11 pages including this cover. There are 10 problems.
Note that the problems are not of equal difficulty, so you may want to skip over and return
to a problem on which you are stuck.

3. Do not separate the pages of this exam. If they do become separated, write your initials (not
name) on every page and point this out to your instructor when you hand in the exam.

4. Note that the back of every page of the exam is blank, and, if needed, you may use this
space for scratchwork. Clearly identify any of this work that you would like to have graded.

5. Please read the instructions for each individual problem carefully. One of the skills being
tested on this exam is your ability to interpret mathematical questions, so instructors will
not answer questions about exam problems during the exam.

6. Show an appropriate amount of work (including appropriate explanation) for each problem,
so that graders can see not only your answer but how you obtained it.

7. The use of any networked device while working on this exam is not permitted.

8. You may use any calculator that does not have an internet or data connection except a
TI-92 (or other calculator with a “qwerty” keypad). However, you must show work for any
calculation which we have learned how to do in this course. You are also allowed two sides of
a 3′′ × 5′′ note card.

9. For any graph or table that you use to find an answer, be sure to sketch the graph or write
out the entries of the table. In either case, include an explanation of how you used the graph
or table to find the answer.

10. Include units in your answer where that is appropriate.

11. Turn off all cell phones, smartphones, and other electronic devices, and remove all
headphones, earbuds, and smartwatches.

12. You must use the methods learned in this course to solve all problems.

Problem Points Score

1 7

2 12

3 9

4 10

5 15

Problem Points Score

6 11

7 7

8 14

9 6

10 9

Total 100
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1. [7 points] Gertrude wants to enclose a rectangular region in her backyard. She wants to use
high fencing (thick line), which costs $200 per foot, for one side of the rectangle. For the
remaining three sides, she wants to use normal fencing (thin line), which costs $75 per foot.
Let A(h) be the area (in square feet) of the region enclosed by the fence if h is the length (in
feet) of the side with high fencing and Gertrude spends $3000 on fencing for the project.

h feet

a. [4 points] Find a formula for A(h).

Answer: A(h) =

b. [3 points] In the context of this problem, what is the domain of A(h)?

Answer: Domain:
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2. [12 points]
Let f be the piecewise linear function
with graph shown below.
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y = f(x)

The table below gives several values of a differen-
tiable function g and its derivative g′.
Assume that both g(x) and g′(x) are invertible.

x −2 −1 0 2 5

g(x) 21 11 5 −1 −3

g′(x) −12 −8 −4 −2 −0.4

You are not required to show your work on this
problem. However, limited partial credit may be
awarded based on work shown.

For each of parts a.-f. below, find the value of the
given quantity. If there is not enough information
provided to find the value, write “not enough
info”. If the value does not exist, write “does
not exist”.

a. [2 points] Let j(x) = eg(x). Find j′(2).

Answer:

b. [2 points] Let k(x) = f(x)f(x+ 2). Find k′(−1).

Answer:
c. [2 points] Let h(x) = 3f(x) + g(x). Find h′(−2).

Answer:
d. [2 points] Find (g−1)′(2).

Answer:

e. [2 points] Let m(x) = g(f(g(x))). Find m′(2).

Answer:

f. [2 points] Let `(x) =
f(x)

g(2x)
. Find `′(−1).

Answer:
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3. [9 points] Consider the curve C defined by

cos(ax− y) + x2 + y2 = b

where a and b are positive constants.

a. [5 points] For the curve C, find a formula for
dy

dx
in terms of x and y. The constants a

and b may appear in your answer. To earn credit for this problem, you must compute
this by hand and show every step of your work clearly.

Answer:
dy

dx
=

b. [1 point] Let a = 1 and b = 9. Exactly one of the following points (x, y) lies on the curve
C. Circle that one point.

(3, 0) (2, 2) (1,−1) (π, π) (0,−9)

c. [3 points] With a = 1 and b = 9 as above, find an equation for the tangent line to the
curve C at the point you chose in part b..

Answer: y =
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4. [10 points] Let h(x) be a twice differentiable function defined for all real numbers x. (So h is
differentiable and its derivative h′ is also differentiable.)
Some values of h′(x), the derivative of h are given in the table below.

x −8 −6 −4 −2 0 2 4 6 8

h′(x) 3 7 0 −3 −5 −4 0 −2 6

For each of the following, circle all the correct answers.
Circle “none of these” if none of the provided choices are correct.

a. [2 points] Circle all the intervals below in which h(x) must have a critical point.

−8 < x < −6 −6 < x < −2 −2 < x < 2 2 < x < 6 6 < x < 8

none of these

b. [2 points] Circle all the intervals below in which h(x) must have a local extremum
(i.e. a local maximum or a local minimum).

−8 < x < −6 −6 < x < −2 −2 < x < 2 2 < x < 6 6 < x < 8

none of these

c. [2 points] Circle all the intervals below in which h(x) must have an inflection point.

−8 < x < −4 −4 < x < 0 0 < x < 4 2 < x < 6 4 < x < 8

none of these

d. [2 points] Circle all the intervals below which must contain a number c such that
h′′(c) = 2.

−8 < x < −6 −4 < x < −2 −2 < x < 0 2 < x < 4 6 < x < 8

none of these

e. [2 points] Suppose that h′′(x) < 0 for x < −8, and h(−8) = 7. Circle all the numbers
below which could equal the value of h(−10).

−2 −1 0 1 2

none of these
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5. [15 points] Suppose g(x) is a differentiable function defined for all real numbers x.
The derivative and second derivative of g(x) are given by

g′(x) = x2(x+ 4)(x+ 2)1/3 and g′′(x) =
2x(x+ 3)(5x+ 8)

3(x+ 2)2/3
.

a. [2 points] Find the x-coordinates of all critical points of g(x).
If there are none, write “none”.

Answer: Critical point(s) of g(x) at x =

b. [2 points] Find the x-coordinates of all critical points of g′(x).
If there are none, write “none”.

Answer: Critical point(s) of g′(x) at x =

c. [6 points] Find the x-coordinates of all local maxima and local minima of g(x).
If there are none of a particular type, write “none”. Use calculus to find and justify
your answers, and be sure to show enough evidence to demonstrate that you have found
all local extrema.

Answer: Local max(es) at x = and Local min(s) at x =

d. [5 points] Find the x-coordinates of all inflection points of g(x).
If there are none, write “none”. Use calculus to find and justify your answers, and be
sure to show enough evidence to demonstrate that you have found all inflection points.

Answer: Inflection point(s) at x =
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6. [11 points] On the axes provided below, sketch the graph of a single function y = g(x)
satisfying all of the following:

• g(x) is defined for all x in the interval −6 < x < 6.

• g(x) has at least 5 critical points in the interval −6 < x < 6.

• The global maximum value of g(x) on the interval −5 ≤ x ≤ −3 is 4, and this occurs at
x = −4.

• g(x) is not continuous at x = −2.

• g′(x) (the derivative of g) has a local maximum at x = 0.

• g(x) is continuous but not differentiable at x = 1.

• g′′(x) ≥ 0 for all x in the interval 2 < x < 4.

• g(x) has at least one local minimum on the interval 4 < x < 6 but does not have a
global minimum on the interval 4 < x < 6.

• g(x) has an inflection point at x = 5.

Make sure your sketch is large and unambiguous.

Graph of y = g(x)
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7. [7 points] Alicia decides to go for a run before completing her math homework. Let g(m) be
the time (in hours) that Alicia spends completing her math assignment if she runs m miles.
Suppose that for 1.2 ≤ m ≤ 8,

g(m) = 2m− 12.2 ln(m) + 15− 14.4

m
.

Note that on this interval, the derivative of g is given by the formula

g′(m) =
2(m− 4.5)(m− 1.6)

m2
.

a. [5 points] Find all values of m that maximize and minimize the function g(m) on the
interval 1.2 ≤ m ≤ 8. Use calculus to find your answers, and be sure to show enough
evidence that the points you find are indeed global extrema.

For each answer blank below, write “none” if appropriate.

Answer: Global max(es) at m=

Answer: Global min(s) at m=

b. [2 points] Assuming that Alicia runs at least 1.2 miles and at most 8 miles, what is the
shortest amount of time Alicia could spend completing her homework?
Remember to include units.

Answer: Shortest time:
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8. [14 points]
Suppose H is a differentiable function
such that H ′(w) is also differentiable for
0 < w < 10. Several values of H(w)
and of its first and second derivatives
are given in the table on the right.

w 1 2 3 5 8

H(w) 6.3 5.4 5.2 4.8 0.7

H ′(w) −1.5 −0.4 −0.1 −0.6 −2.1

H ′′(w) 1.6 0.9 0 −0.8 −0.4

Assume that between each pair of consecutive values of w shown in the table,
each of H ′(w) and H ′′(w) is either always strictly decreasing or always strictly
increasing. Remember to show your work carefully.

a. [3 points] Use an appropriate linear approximation to estimate H(5.2).

Answer: H(5.2) ≈
b. [5 points] Let J(w) be the local linearization of H near w = 2, and let K(w) be the local

linearization of H near w = 3. Which of the following statements must be true?
Circle all of the statements that must be true, or circle “none of these”.

J(2) > H(2)

J(2) = H(2)

J(2) < H(2)

J ′(2) > H ′(2)

J ′(2) = H ′(2)

J ′(2) < H ′(2)

J(2.5) > H(2.5)

J(2.5) = H(2.5)

J(2.5) < H(2.5)

K(2.5) > H(2.5)

K(2.5) = H(2.5)

K(2.5) < H(2.5)

K(3.5) > H(3.5)

K(3.5) = H(3.5)

K(3.5) < H(3.5)

K ′(3.5) > H ′(3.5)

K ′(3.5) = H ′(3.5)

K ′(3.5) < H ′(3.5)

none of these

c. [3 points] Use the quadratic approximation of H(w) at w = 1 to estimate H(0.9).
(Recall that a formula for the quadratic approximation Q(x) of a function f(x) at x = a

is Q(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2 (x− a)2.)

Answer: H(0.9) ≈

d. [3 points] Consider the function N defined by N(w) = H(2w2 − 10), and let L(w) be the
local linearization of N(w) at w = 3. Find a formula for L(w). Your answer should not
include the function names N or H.

Answer: L(w) =
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9. [6 points] Consider a continuous function T with the following properties.

• T (v) is defined for all real numbers v.

• The critical points of T (v) are the four points v = 3, v = 5, v = 7, and v = 8.
(T (v) has no other critical points.)

Some values of T are shown in the following table:
v 0 3 5 7 8 10

T (v) 21 9 13 19 11 21

For each of a.-f. below, use the answer blank provided to list all the values v at which T (v)
attains the specified global extremum. If there is not enough information provided to give an
answer, write “not enough info”. If T (v) does not attain the specified global extremum on
the specified interval, write “none”.

For what value(s) v does T (v) attain its . . .

a. global minimum on the interval 0 ≤ v ≤ 10?

Answer: v =

b. global maximum on the interval 0 ≤ v ≤ 10?

Answer: v =

c. global minimum on the interval 0 < v < 10?

Answer: v =

d. global maximum on the interval 0 < v < 10?

Answer: v =

e. global minimum on the interval (−∞,∞)?

Answer: v =

f. global maximum on the interval (−∞,∞)?

Answer: v =
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10. [9 points] Consider the function h defined by h(x) =

{
Ax4 if x < 2

Bx3 + 80 ln
(
x
2

)
if x ≥ 2

where A and B are constants.

a. [6 points] Find values of A and B so that h is differentiable.
Remember to show your work clearly.

Answer: A = and B =

b. [3 points] Using the values of A and B you found in part a., find the tangent line
approximation for h(x) near x = 1.

Answer: The tangent line approximation is given by y =


