4. (8 pts) A function g(x) is graphed below, together with its tangent line when x = 2.

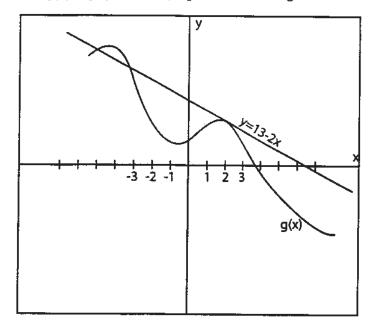


Figure 1: g(x) with tangent line

a) What is the value of g(2)?

g(z) = 9, since the tangent line crosses the
graph of g(x) at the point (2, g(z)).
b) What is the value of g'(2)?
g'(z) = -2, since this is the slope of the
tangent line to the graph of g(x) at the
(c) Does the limit lim_{h→0} electric first, If so, what is its value? If not, explain why not. Fornt (2, g(r))
This expression, dim
$$\frac{g(2th)-g(z)}{h}$$
, is the definition
 $h \to 0$
Using limits of the derivative $g'(x)$ at $x = 2$.
We are told $g(x)$ box a derivative at $x = 2$,
Sr this limit exists. Part(b) says it equals
 -2 when $x = 2$,

i