9. (15 pts) The tortoise, the hare, and the rhinoceros begin a 9 -mile race at $t=0$ hours. Remarkably, a 3 -way tie results - it takes each competitor exactly 2 hours to finish.

The tortoise's style is slow and steady. He runs the entire race without speeding up or slowing down at all. The hare's style is more erratic: He runs half of the race in the first 20 minutes, stops for a long tea, then runs the second half in the last 20 minutes. The rhino, an amateur mathematician, runs so that her position $R(t)$ in miles from the starting line is always exactly $4.5 t^{3-t}$.
a) What is the average velocity on the time-interval $[0,2]$ of...
i) ...the tortoise?

The average velocity is $\frac{9 \mathrm{mi}}{2 \text { hers }}=4.5 \mathrm{~mm} / \mathrm{hr}$
the hare?
ii) ...the hare?

The same average velocity, $4.5 \mathrm{mi} /$ ho
iii) ...the rhinoceros?

The sums average velocity, $4.5 \mathrm{mi} /$ hor
b) What is the instantaneous velocity of the tortoise at time $t=1$?

The for torse moves with constant velocity,
so his instantaneous velouty at $t=2$ is $4.5 \mathrm{mi} / \mathrm{hos}$.
c) What is the instantaneous velocity of the hare at time $t=1$?

The hare is stationary from $t=1 / 3 \mathrm{hr}$, to $t=12 / 3 \mathrm{hr}$,
so at $t=1$, its velocity is 0 .
d) Estimate the instantaneous velocity of the rhinoceros at time $t=1$. (Show your work. "I used my calculator" is not sufficient work.)

The rhino is at 4.5 mi at $t=1$. To estimate the velocity $a t$ t $t=1$, rompute the average velouty from $t=1$ to $t=1.1$. This is $\frac{4.5(1.1)^{3-1.1}-4.5(1)^{2}}{0.1}$ n8.934 (by calculator).
e) Imagine that you are a radio reporter describing the events as you see them at time $t=1$. Tell your audience the status of the race. For example, is anyone passing anyone else?

At $t=1$, all three are tied at 4.5 mi . The hare is stall, the tortoise is moving at speed $4.5 \mathrm{mi} / \mathrm{hor}$ and the rhine at speed approximately $8.934 \mathrm{~m} / \mathrm{mm}$. Unless something changes, it looks as though the rhino will win. (smashing stet chase)

