5. (8 points) (a) Find a value of k so that the function

$$f(x) = \begin{cases} 1 - x, & \text{if } x < 3; \\ kx - 4k, & \text{if } x \ge 3. \end{cases}$$

is continuous on every interval.

(b) Is the function you found differentiable at x = 3? Explain why or why not.

- 6. (12 points) Are the given statements true or false? Give an explanation for each answer.
- (a) If the graph of a function g is obtained by shifting the graph of a function f vertically upward by 3 units, then g' = f' + 3.
- (b) If a function is not differentiable then it is not continuous.
- (c) If f'' > 0, then f is increasing.
- (d) The inequality $\sqrt{x} < 2\log(x^4)$ holds for large positive values of x (that is, as $x \to +\infty$).