9. (12 points) (a) Give the formula that defines the derivative of a function \(f \) at a point \(a \).

\[
 f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
\]

(b) Using the definition of the derivative, write the formula for \(f'(1) \) if \(f(x) = (4 + x)^3 \)

\[
 f'(1) = \lim_{h \to 0} \frac{(4 + 1 + h)^3 - (4 + 1)^3}{h}
\]

\[
 = \lim_{h \to 0} \frac{(5 + h)^3 - 5^3}{h}
\]

(c) Numerically approximate \(f'(1) \) correct to at least three decimal places. To receive full credit, you must show the calculations you used to justify your answer.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(\frac{(5+h)^3 - 5^3}{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>9.1387</td>
</tr>
<tr>
<td>0.01</td>
<td>9.0563</td>
</tr>
<tr>
<td>0.001</td>
<td>9.0481</td>
</tr>
<tr>
<td>0.0001</td>
<td>9.0473</td>
</tr>
</tbody>
</table>

To 3 decimal places, \(f'(1) \approx 9.047 \).