(6.) (6 points) Let $f(x)=x^{3 x}$. Use the definition of the derivative to express $f^{\prime}(2)$ as a limit. You do not need to simplify your expression or try to estimate $f^{\prime}(2)$.
(7.) (8 points) Suppose g is a differentiable function that satisfies the following three properties:

1. g is concave up.
2. $g(1)=9$.
3. $g(5)=3$.
(a) What is the average rate of change of g on the interval $[1,5]$?
(b) Which is larger, $g^{\prime}(2)$ or $g^{\prime}(4)$? Explain.
(c) What is the maximum possible value for $g(3)$? (Hint: try sketching a graph of g.) Explain your reasoning.
