(6.) (6 points) Let \(f(x) = x^3 \). Use the \textbf{definition} of the derivative to express \(f'(2) \) as a limit. You do not need to simplify your expression or try to estimate \(f'(2) \).

(7.) (8 points) Suppose \(g \) is a differentiable function that satisfies the following three properties:

1. \(g \) is concave up.
2. \(g(1) = 9 \).
3. \(g(5) = 3 \).

(a) What is the average rate of change of \(g \) on the interval \([1, 5]\)?

(b) Which is larger, \(g'(2) \) or \(g'(4) \)? Explain.

(c) What is the maximum possible value for \(g(3) \)? (Hint: try sketching a graph of \(g \).) Explain your reasoning.