(6.) (6 points) Let $f(x)=x^{3 x}$. Use the definition of the derivative to express $f^{\prime}(2)$ as a limit. You do not need to simplify your expression or try to estimate $f^{\prime}(2)$.

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{(2+h)^{3(2+h)}-2^{6}}{h}
$$

(7.) (8 points) Suppose g is a differentiable function that satisfies the following three properties:

1. g is concave up.
2. $g(1)=9$.
3. $g(5)=3$.
(a) What is the average rate of change of g on the interval $[1,5]$?

$$
\frac{3-9}{5-1}=-\frac{6}{4}=-\frac{3}{2}
$$

(b) Which is larger, $g^{\prime}(2)$ or $g^{\prime}(4)$? Explain.

Since g is concave up, we know that $g^{\prime \prime}>0$. This means that g^{\prime} is increasing, so $g^{\prime}(4)>g^{\prime}(2)$.
(c) What is the maximum possible value for $g(3)$? (Hint: try sketching a graph of g.) Explain your reasoning.

A sketch suggests the key idea: since g is concave up, the graph of g between $x=1$ and $x=5$ must be lower than the secant line connecting the points $(1,9)$ and $(5,3)$. This line passes through the point $(3,6)$, and so it must be the case that $g(3)<6$.

