7. (10 points) For this problem f is differentiable everywhere.
(a) Write the limit definition of the derivative of the function f at the point a.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(b) On the graph below, show how the average rate of change of f between $x=a$ and $x=a+h$ is related to the derivative at the point a. Give a brief explanation of your illustration including how the limit as $h \rightarrow 0$ is demonstrated in your picture.

The average rate of change of f between $x=a$ and $x=a+h$ is the slope of the red line connecting $f(a)$ and $f(a+h)$. This is an approximation to the derivative of f at $x=a$, which is the slope of the tangent line (shown in blue) of f at $x=a$. One can see as the h gets smaller $(h \rightarrow 0)$, the slopes of the red lines become better and better approximations to the slope of the tangent line to f and $x=a$.
(c) Write the limit definition for $f^{\prime}(2)$ if $f(x)=e^{\sin 2 x}$. [You do not need to find the limit or approximate $f^{\prime}(2)$.]

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{e^{\sin 2(2+h)}-e^{\sin 4}}{h}
$$

