9. (5 points) Write the limit definition for the derivative of $e^{\sin (x)}$ with respect to x. (No need to simplify or to attempt to find the limit.)

$$
\lim _{h \rightarrow 0} \frac{e^{\sin (x+h)}-e^{\sin (x)}}{h}
$$

10. (9 points) Suppose

$$
f(x)=\left\{\begin{array}{cl}
e^{\sin (x)} & x<\frac{\pi}{2} \\
k x & x \geq \frac{\pi}{2}
\end{array}\right.
$$

where k is some constant.
(a) If f is continuous, what is the value of k ?

To ensure continuity, the two branches must have the same value at $x=\frac{\pi}{2}$. Therefore, $e^{\sin (\pi / 2)}=k \frac{\pi}{2}$ is forced. Solving gives $k=\frac{2 e}{\pi}$.
(b) Compute the average rate of change of f between $x=1.5$ and $x=\frac{\pi}{2}$.

The number we want is

$$
\frac{\Delta f}{\Delta x}=\frac{e-e^{\sin (1.5)}}{\pi / 2-1.5}=.09606
$$

(c) Compute the average rate of change of f between $x=1.57$ and $x=\frac{\pi}{2}$.

The number we want is

$$
\frac{\Delta f}{\Delta x}=\frac{e-e^{\sin (1.57)}}{\pi / 2-1.57}=.00108
$$

(d) Do you think f is differentiable at $x=\frac{\pi}{2}$? Explain your answer. [Your work from parts (a) - (c) may be useful here.]

The function will not be differentiable. The rate of change of f at $\frac{\pi}{2}$ approaches 0 from the left, but from the right it is $k=\frac{2 e}{\pi} \neq 0$. Therefore, the function has a cusp or sharp corner at $x=\frac{\pi}{2}$.

