9. (5 points) Write the limit definition for the derivative of \(e^{\sin(x)} \) with respect to \(x \). (No need to simplify or to attempt to find the limit.)

\[
\lim_{h \to 0} \frac{e^{\sin(x+h)} - e^{\sin(x)}}{h}
\]

10. (9 points) Suppose

\[
f(x) = \begin{cases}
e^{\sin(x)} & x < \frac{\pi}{2} \\
kx & x \geq \frac{\pi}{2}
\end{cases}
\]

where \(k \) is some constant.

(a) If \(f \) is continuous, what is the value of \(k \)?

To ensure continuity, the two branches must have the same value at \(x = \frac{\pi}{2} \). Therefore, \(e^{\sin(\pi/2)} = k \frac{\pi}{2} \) is forced. Solving gives \(k = \frac{2e}{\pi} \).

(b) Compute the average rate of change of \(f \) between \(x = 1.5 \) and \(x = \frac{\pi}{2} \).

The number we want is

\[
\frac{\Delta f}{\Delta x} = \frac{e - e^{\sin(1.5)}}{\pi/2 - 1.5} = .09606
\]

(c) Compute the average rate of change of \(f \) between \(x = 1.57 \) and \(x = \frac{\pi}{2} \).

The number we want is

\[
\frac{\Delta f}{\Delta x} = \frac{e - e^{\sin(1.57)}}{\pi/2 - 1.57} = .00108
\]

(d) Do you think \(f \) is differentiable at \(x = \frac{\pi}{2} \)? Explain your answer. [Your work from parts (a) - (c) may be useful here.]

The function will not be differentiable. The rate of change of \(f \) at \(\frac{\pi}{2} \) approaches 0 from the left, but from the right it is \(k = \frac{2e}{\pi} \neq 0 \). Therefore, the function has a cusp or sharp corner at \(x = \frac{\pi}{2} \).