6. (12 points) Consider the function \(f(x) = \sin(x^2) \).

(a) Explain what the difference quotient \(\frac{\sin(\sqrt{\pi^2}) - \sin(0)}{\sqrt{\pi}} \) represents.

(b) Write the limit definition for \(f'(\sqrt{\pi}) \) without using the symbol \(f \). No need to numerically evaluate the limit or approximate \(f'(\sqrt{\pi}) \).

(c) Suppose that \(g \) is a new function defined as follows:

\[
g(x) = \begin{cases}
2f(x) & x < \sqrt{\pi/2} \\
kx + 4 & x \geq \sqrt{\pi/2}
\end{cases}
\]

for \(f(x) \) as above

For what value of \(k \) is the function \(g \) continuous?