2. Suppose $A(t)$ is a function that gives the average high temperature (in ${ }^{\circ} F$) in Ann Arbor as a function of t measured in months where $t=0$ represents January (the coldest month in Ann Arbor).
(a) (2 points) Puerto Montt, a city in Chile, is approximately the same distance from the equator as Ann Arbor, but it is in the southern hemisphere where the warmest month is January. Let $P(t)$ be a function that gives the average high temperature in ${ }^{\circ} F$ in Puerto Montt as a function of time, t, in months. Write $P(t)$ in terms of $A(t)$.

$$
P(t)=A(t-6) \text { or, (equally acceptable) } P(t)=A(t+6)
$$

(b) (2 points) The average high temperatures in Montreal are approximately $10^{\circ} \mathrm{F}$ less than the average highs in Ann Arbor. If $M(t)$ is a function that gives the average high temperature in Montreal as a function of time, t in months, express $M(t)$ in terms of $A(t)$.

$$
M(t)=A(t)-10
$$

(c) (5 points) The average high temperature in Ann Arbor ranges from a low of $30^{\circ} \mathrm{F}$ in January to a high of $84^{\circ} F$ in July. Use this information to write $A(t)$ as trigonometric function.

$$
A(t)=-27 \cos \left(\frac{\pi}{6} t\right)+57
$$

(d) (1 point) What is the amplitude of the function found in (c)? 27
(2 points) What is the period of the function found in (c)? \qquad

