5. (8 points) Below is a table of values for two functions f and g.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1.5</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>-0.16</td>
<td>-0.284</td>
<td>-0.5</td>
<td>-0.64</td>
<td>0</td>
<td>0.64</td>
<td>0.5</td>
<td>0.28</td>
<td>0.16</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>-0.88</td>
<td>-1.0888</td>
<td>-1</td>
<td>0.32</td>
<td>2</td>
<td>0.32</td>
<td>-1</td>
<td>-1.088</td>
<td>-0.88</td>
</tr>
</tbody>
</table>

Use the table to answer the following:

(a) $g(f(-1)) = g(-0.5) = 0.32$

(b) $3g(-1.5) = 3(-1.0888) = -3.2664$

(c) $f(g(0)) = f(2) = 0.16$

(d) $g(2)f(-1) = -0.88(-0.5) = 0.44$

Below is a plot of the functions f and g.

(e) Circle ONE of the following

$$f(x) = g'(x) \quad \text{or} \quad g(x) = f'(x)$$

AND explain your reasoning below.

The function f cannot be the derivative of g, because g is increasing for $x = -1$ to $x = 0$ (for example), and f is negative there. On the other hand, g is negative when f is decreasing, zero when f changes from decreasing to increasing (near $x = -0.5$), then positive when f is increasing, etc. Thus, g is the derivative of f.