
5. (8 points) Below is a table of values for two functions f and g.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
f(x)	-0.16	-0.284	-0.5	-0.64	0	0.64	0.5	0.28	0.16
g(x)	-0.88	-1.0888	-1	0.32	2	0.32	-1	-1.088	-0.88

Use the table to answer the following:

(a)
$$g(f(-1)) = g(-0.5) = 0.32$$

(b) $3g(-1.5) = 3(-1.0888) = -3.2664$
(c) $f(g(0)) = f(2) = 0.16$
(d) $g(2)f(-1) = -0.88(-0.5) = 0.44$

Below is a plot of the functions f and g.

(e) Circle ONE of the following

$$f(x) = g'(x)$$
 or $g(x) = f'(x)$,

AND explain your reasoning below.

The function f cannot be the derivative of g, because g is increasing for x = -1 to x = 0 (for example), and f is negative there. On the other hand, g is negative when f is decreasing, zero when f changes from decreasing to increasing (near x = -0.5), then positive when f is increasing, etc. Thus, g is the derivative of f.