5. (8 points) Below is a table of values for two functions f and g.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
$f(x)$	-0.16	-0.284	-0.5	-0.64	0	0.64	0.5	0.28	0.16
$g(x)$	-0.88	-1.0888	-1	0.32	2	0.32	-1	-1.088	-0.88

Use the table to answer the following:
(a) $g(f(-1))=g(-0.5)=0.32$
(c) $f(g(0))=f(2)=0.16$
(b) $3 g(-1.5)=3(-1.0888)=-3.2664$
(d) $g(2) f(-1)=-0.88(-0.5)=0.44$

Below is a plot of the functions f and g.

(e) Circle ONE of the following

$$
f(x)=g^{\prime}(x) \quad \text { or } \quad g(x)=f^{\prime}(x)
$$

AND explain your reasoning below.

The function f cannot be the derivative of g, because g is increasing for $x=-1$ to $x=0$ (for example), and f is negative there. On the other hand, g is negative when f is decreasing, zero when f changes from decreasing to increasing (near $x=-0.5$), then positive when f is increasing, etc. Thus, g is the derivative of f.

