6. (12 points) Consider the function $f(x)=\sin \left(x^{2}\right)$.
(a) Explain what the difference quotient $\frac{\sin \left(\sqrt{\pi}^{2}\right)-\sin (0)}{\sqrt{\pi}}$ represents.

The difference quotient represents the slope of the secant line joining the points $(0,0)$ and $\left(\sqrt{\pi} 2, \sin \left(\sqrt{\pi}^{2}\right)\right)$-or, it gives the average rate of change of the function $f(x)=\sin \left(x^{2}\right)$ between $x=0$ and $x=\sqrt{\pi}$.
(b) Write the limit definition for $f^{\prime}(\sqrt{\pi})$ without using the symbol f. No need to numerically evaluate the limit or approximate $f^{\prime}(\sqrt{\pi})$.

The definition gives

$$
f^{\prime}(\sqrt{\pi})=\lim _{h \rightarrow 0} \frac{\sin \left((\sqrt{\pi}+h)^{2}\right)-\sin \left(\sqrt{\pi}^{2}\right)}{h} .
$$

(c) Suppose that g is a new function defined as follows:

$$
g(x)=\left\{\begin{array}{ll}
2 f(x) & x<\sqrt{\pi / 2} \\
k x+4 & x \geq \sqrt{\pi / 2}
\end{array} \quad \text { for } f(x)\right. \text { as above }
$$

For what value of k is the function g continuous?

Since both f and $k x+4$ are continuous, we need to assure that the functions meet at $x=$ $\sqrt{\pi / 2}$. Thus, we need to solve for k if

$$
2 \sin \left(\sqrt{\pi / 2}^{2}\right)=k \sqrt{\pi / 2}+4
$$

This gives

$$
2=k \sqrt{\pi / 2}+4 \quad\left(\text { since } \sin \left(\sqrt{\pi / 2}^{2}\right)=1\right)
$$

so

$$
k=\frac{-2}{\sqrt{\pi / 2}}
$$

