7. (11 points) (a) On the axes below sketch a graph of a single, continuous differentiable function $h$ that satisfies all of the following properties

- $h(2)=5$
- $h^{\prime \prime}(x)<0$ for $x<3$
- $h^{\prime}(5)=0$
- $\lim _{x \rightarrow \infty} h(x)=2$
- $h^{\prime}$ is positive for $x<2$ and $x>5$
- $h$ is decreasing for $2<x<5$

(b) What is $\lim _{x \rightarrow-\infty} h(x)$ ? $\quad-\infty$
(c) If $h^{\prime}(0)=2$, is it possible that $h^{\prime}(-1)=4$ ? Explain.

Yes, it is possible that $h^{\prime}(-1)=4$. We know is that $h$ is increasing and concave down for $x<0$, so we only need $h^{\prime}(-1)>h^{\prime}(0)$.

