5. (a) (4 points) Let the function f be defined as follows:

$$
f(x)= \begin{cases}2^{p}(x-1) & \text { for } \quad x>2 \\ x^{2} & \text { for } 0 \leq x \leq 2 \\ \cos \left(x^{2}\right)+k & \text { for } \quad x<0\end{cases}
$$

Find the values of p and k so that f is a continuous function.

For p we need to make $2^{p}(x-1)=x^{2}$ at $x=2$, i.e.,

$$
2^{p}=4, \quad \text { and thus } \quad p=2 .
$$

$$
p=\underline{2}
$$

For k we need to make $\cos \left(x^{2}\right)+k=x^{2}$ at $x=0$, i.e.,

$$
1+k=0, \quad \text { and thus } \quad k=-1
$$

$$
k=\underline{-1}
$$

(b) (4 points) Using $f(x)$ as determined in part (a) and $g(x)$ given by:

$$
g(x)=\left\{\begin{array}{l}
\frac{x^{3}}{3} \text { for } x \geq 3 \\
|x| \text { for } x<3
\end{array}\right.
$$

find
(i) $\lim _{x \rightarrow 3^{+}} f(x) g(x)$

This is the limit from the RIGHT. Therefore

$$
\lim _{x \rightarrow 3^{+}} f(x) g(x)=\lim _{x \rightarrow 3^{+}} \frac{x^{3}}{3} 4(x-1)=72
$$

(ii) $\lim _{x \rightarrow 3^{-}} f(x) g(x)$

This is the limit from the LEFT. Therefore

$$
\lim _{x \rightarrow 3^{-}} f(x) g(x)=\lim _{x \rightarrow 3^{+}}|x| 4(x-1)=24
$$

