2. Before Hurricane Ike hit Galveston, TX, on September 10, 2008, there were reports of waves up to 26 ft . tall, with offshore buoys recording 14 seconds between waves. The water level along the seawall was already 4 feet above normal sea level, and the city of Galveston was concerned that the storm surge might overwhelm the seawall. Let $W(t)$ be the trigonometric function giving the height of the water above sea level at time t, where t is measured in seconds since one of the waves crashed against the seawall. Assume the minimum height is 4 feet and the waves surge from and return to that level.
(a) (5 points) On the axes below, sketch two periods of $W(t)$. Be sure to include important axes markings and labels.

(b) (7 points) Find a formula for $W(t)$.
(c) (3 points) For what t value, $0 \leq t \leq 14$, is the wave height decreasing the fastest?
