4. The speed of sound, \(v(T) \) (in miles per hour), at an ambient temperature, \(T \) (in degrees Fahrenheit), is given by:

\[
v(T) = 740 + 0.4T.
\]

Objects which travel faster than the speed of sound create sonic booms. However, the ambient temperature \(T \) in the Troposphere also decreases with height \(h \) (in miles) from Earth’s surface according to the equation

\[
T(h) = -26h + T_0,
\]

where \(T_0 \) is the temperature at the surface.

(a) (3 points) Find a formula which will give the speed of sound \(S \) as a function of height \(h \), assuming the surface temperature is 68°F.

(b) (4 points) Find \(S'(1) \) and interpret the meaning of \(S'(1) \) in the context of this problem.

(c) (3 points) While on a flight from Ann Arbor to Chicago on a beautiful 68° day, the pilot’s instruments measure the outside temperature to be 0°. What is the plane’s altitude, and how fast would the pilot need to fly at this altitude to create a sonic boom?