4. The speed of sound, \(v(T) \) (in miles per hour), at an ambient temperature, \(T \) (in degrees Fahrenheit), is given by:

\[
v(T) = 740 + 0.4T.
\]

Objects which travel faster than the speed of sound create **sonic booms**. However, the ambient temperature \(T \) in the Troposphere also decreases with height \(h \) (in miles) from Earth’s surface according to the equation

\[
T(h) = -26h + T_0,
\]

where \(T_0 \) is the temperature at the surface.

(a) (3 points) Find a formula which will give the speed of sound \(S \) as a function of height \(h \), assuming the surface temperature is 68°F.

We are looking for the composite function \(S(h) = v(T(h)) = 740 + 0.4(-26h + 68) = 767.2 - 10.4h \).

(b) (4 points) Find \(S'(1) \) and interpret the meaning of \(S'(1) \) in the context of this problem.

Since \(S \) is linear, the derivative at any point is the same as the line’s slope. Thus, \(S'(1) = -10.4 \frac{mi}{hr} \). Moreover, we can interpret this as telling us that the speed of sound 2 miles above the Earth’s surface is approximately 10.4 mi/hr less than the speed of sound 1 mile above the Earth’s surface.

(c) (3 points) While on a flight from Ann Arbor to Chicago on a beautiful 68°F day, the pilot’s instruments measure the outside temperature to be 0°F. What is the plane’s altitude, and how fast would the pilot need to fly at this altitude to create a sonic boom?

We first need to solve for the plane’s altitude. We can do this by solving the equation \(0 = -26h + 68 \), which gives \(h \approx 2.61 \) miles. Then, we can find the speed of sound at this altitude via \(S(2.61) \approx 740 \) mi/hr. Thus, at this altitude and ambient temperature the pilot would need to fly faster than this speed in order to create a sonic boom.