4. The speed of sound, $v(T)$ (in miles per hour), at an ambient temperature, T (in degrees Farenheit), is given by:

$$
v(T)=740+0.4 T .
$$

Objects which travel faster than the speed of sound create sonic booms. However, the ambient temperature T in the Troposphere also decreases with height h (in miles) from Earth's surface according to the equation

$$
T(h)=-26 h+T_{0},
$$

where T_{0} is the temperature at the surface.
(a) (3 points) Find a formula which will give the speed of sound S as a function of height h, assuming the surface temperature is $68^{\circ} \mathrm{F}$.

We are looking for the composite function $S(h)=v(T(h))=740+0.4(-26 h+68)=767.2-$ 10.4h.
(b) (4 points) Find $S^{\prime}(1)$ and interpret the meaning of $S^{\prime}(1)$ in the context of this problem.

Since S is linear, the derivative at any point is the same as the line's slope. Thus, $S^{\prime}(1)=$ $-10.4 \frac{m i / h r}{m i}$. Moreover, we can interpret this as telling us that the speed of sound 2 miles above the Earth's surface is approximately $10.4 \mathrm{mi} / \mathrm{hr}$ less than the speed of sound 1 mile above the Earth's surface.
(c) (3 points) While on a flight from Ann Arbor to Chicago on a beautiful 68° day, the pilot's instruments measure the outside temperature to be 0°. What is the plane's altitude, and how fast would the pilot need to fly at this altitude to create a sonic boom?

We first need to solve for the plane's altitude. We can do this by solving the equation $0=$ $-26 h+68$, which gives $h \approx 2.61$ miles. Then, we can find the speed of sound at this altitude via $S(2.61) \approx 740 \mathrm{mi} / \mathrm{hr}$. Thus, at this altitude and ambient temperature the pilot would need to fly faster than this speed in order to create a sonic boom.

