8. The function $L(x)=\frac{1}{\ln (x)}$ is differentiable over its domain.
(a) (2 points) What is the domain of L ?

The domain of L is $x>0$, excluding $x=1$.
(b) (4 points) Write the formula for the derivative of L at $x=a$ using the limit definition of the derivative.

$$
L^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\frac{1}{\ln (a+h)}-\frac{1}{\ln a}}{h}
$$

(c) (4 points) Given $\left.\frac{d L}{d x}\right|_{x=2}=-1.0407$ and $\left.\frac{d L}{d x}\right|_{x=2.5}=-.4764$ and given that the derivative is monotonic (meaning the derivative does not change behavior from decreasing to increasing or vice versa) for all $x>1$, what does this information tell you about the graph of L for x near 2? Explain your reasoning using words and symbols (i.e., not by drawing a graph).

The graph of L near $x=2$ must be concave up, since the derivative is increasing and monotonic. The function is decreasing, since the derivative is negative. (Also, we know that the graph of $\ln x$ is increasing, and L is defined as the reciprocal of $\ln x$, so L is decreasing).

