9. San Francisco's famous Golden Gate bridge has two towers which stand 746 ft . above the water, while the bridge itself is only 246 ft . above the water. The last leg of the bridge, which connects to Marin County, is $2,390 \mathrm{ft}$. long. The suspension cables connecting the top of the tower to the mainland can be modeled by an exponential function. Let $H(x)$ be the function describing the height above the water of the suspension cable as a function of x, the horizontal distance from the tower.

(a) (4 points) Find a formula for $H(x)$.

We are looking for a formula of the form $H(x)=H_{0} a^{x}$. We can use the given information to extract the two points which we'll use to find our exponential function: $(0,746)$ and $(2390,246)$. The first of these points gives use the initial value, and from the second we can form the equation $246=746 a^{2390}$, which can be solved for a. Thus, our final equation is $H(x)=746(0.9995)^{x}$, or $H(x)=746 e^{-0.000464 x}$.
(b) (4 points) The engineers determined that some repairs are necessary to the suspension cables. They climb up the tower to 400 ft above the bridge, and they need to lay a horizontal walking board between the tower and the suspension cable. How long does the walking board need to be to reach the cable?

We are looking for an x-value, given that the height up the tower is $246+400=646$. Thus, we must solve the equation $646=746(0.9995)^{x}$. Solving this equation yields about 287.78 ft , or, if using the second form, $x \approx 310 \mathrm{ft}$. (Note: the variance in answers is due to round-off in the representations. Either form is accepted.)

