- 1. [12 points] For each problem below, circle all of the statements that MUST be true. (The three parts (a)–(c) are independent of each other. No explanations are necessary.)
 - **a**. [5 points] Suppose f is an increasing differentiable function with domain $(-\infty, \infty)$ so that f(1) = 1 and f(-1) = -1.
 - $\circ~f$ is linear.
 - \circ There is a number c so that f(c) = 0.
 - $\circ \lim_{x \to 1} f(x) = 1$ $\circ \lim_{x \to \infty} f(x) = \infty$
 - $\circ f'(1) \ge 0$

- **b.** [3 points] Suppose g(t) is the mass (in grams) of mold on a wedge of cheese in a refrigerator t days after it was abandoned. This mass grows exponentially as a function of time for two weeks, when it is finally thrown away.
 - \circ The graph of g is concave up.
 - \circ The continuous growth rate of g is less than the daily growth rate.
 - $\circ\,$ The amount of time it takes for the mass of mold on the cheese to triple is 1.5 times the amount of time it takes for it to double.

- **c.** [4 points] If $f(x) = \frac{g(x)}{h(x)}$ and h(3) = 0 then
 - The graph of f has a vertical asymptote at x = 3.
 - \circ 3 is not in the domain of f.
 - \circ f is not continuous on [-2, 2].
 - $\circ \lim_{x \to 3} f(x) \text{ does not exist.}$