2. [12 points] Suppose that the line tangent to the graph of $f(x)$ at $x=3$ passes through the points $(1,2)$ and $(5,-4)$.
a. [3 points] Find $f^{\prime}(3)$.

Solution:

The slope of the given tangent line is $\frac{\Delta y}{\Delta x}=\frac{-4-2}{5-1}=\frac{-3}{2}$.
Since $f^{\prime}(3)$ IS the slope of the tangent line to the graph of $f(x)$ at $x=3$, we find that $f^{\prime}(3)=\frac{-3}{2}$.
b. [3 points] Find $f(3)$.

Solution:

$f(3)$ is the y-value of the point on the given line that has x-coordinate equal to 3 . Using the slope found in part (a), we find that an equation for the line is

$$
y=-\frac{3}{2} x+\frac{7}{2}
$$

So when $x=3$, it follows that $y=-1$.
Hence $f(3)=-1$. (See graph to right.)

c. [3 points] Estimate the value of $f(2.9)$.

Solution: $\quad f(2.9)$ is approximately equal to the y-value on the given line at the point $x=2.9$. Using the equation from (b), we find $f(2.9) \approx\left(-\frac{3}{2}\right)(2.9)+\frac{7}{2}=-0.85$. Hence $f(2.9) \approx-0.85$.
d. [3 points] If the graph of f is concave up, is your estimate in part (c) an overestimate, an underestimate, or can you not tell? Explain or demonstrate your answer graphically.
Solution: Since the graph of f is concave up, its slope is increasing. So, the slope of the graph of f between $x=2.9$ and $x=3$ is less than (more negative) than $f^{\prime}(3)$. The point on the graph of f at $x=2.9$ will therefore be above the point on the line at $x=2.9$. That is, $f(2.9)$ is greater than the estimate of -0.85 from part (c), so -0.85 is an UNDERESTIMATE of $f(2.9)$. (See graph to right.)

