6. [10 points] The force F, in Newtons, between two atoms a distance r femtometers (fm) apart in a molecule is given by $F(r)=b\left(\frac{a^{2}}{r^{3}}-\frac{a}{r^{2}}\right)$ for some positive constants a and b.
Note: Your answers below might involve the constants a and b.
a. [3 points] Find and interpret any horizontal intercept(s) of the graph of $F(r)$.

Solution: Horizontal intercepts occur when $F(r)=0$. Note that
$F(r)=b\left(\frac{a^{2}-a r}{r^{3}}\right)=b a\left(\frac{a-r}{r^{3}}\right)$. Thus, $F(r)=0$ when $r=a$. Under this condition, the force between the atoms is zero.
b. [3 points] Find any asymptote(s) of the graph of $F(r)$.

Solution: As $r \rightarrow \pm \infty, F(r) \rightarrow 0$, so there is a horizontal asymptote of $F(r)=0$. Also, $F(r)$ is undefined at $r=0$ and since the numerator is not zero there, we have a vertical asymptote at $r=0$.
c. [4 points] Give the practical interpretation of $F^{\prime}(1)=-1.2 \times 10^{-9}$.

Solution: When the distance between atoms is 1 femtometer, if the distance increases another femtometer (to two femtometers), the force between the atoms would decrease by approximately 1.2×10^{-9} Newtons.

