7. [6 points] Consider the function \(W(t) = 3 \ln (\sin(t)^2 + 2) \). Write down the limit definition of \(W'(\pi) \). (You do not need to estimate or compute the derivative.)

Solution: Using the limit definition, we have

\[
W'(\pi) = \lim_{h \to 0} \frac{3 \ln(\sin(\pi + h)^2 + 2) - 3 \ln(\sin(\pi^2 + 2))}{h}.
\]

8. [9 points] The three graphs labeled A, B, and C below depict a function \(g \) along with its first and second derivatives (\(g' \) and \(g'' \)). Determine which is which.

Your answer to parts (a)–(c) should be a single legible capital letter (A, B, or C).

a. [2 points] The graph of \(g \) is labeled _______.
Solution: A

b. [2 points] The graph of \(g' \) is labeled _______.
Solution: C

c. [2 points] The graph of \(g'' \) is labeled _______.
Solution: B

d. [3 points] Briefly explain your reasoning.

Solution: Graph A cannot be the derivative of either B or C, because Graph A is positive for \(x < 0 \) and both Graphs B and C have intervals where the function is decreasing for \(x < 0 \). Thus, Graph A must be \(g \). Graph C is positive where Graph A is increasing, negative where Graph A is decreasing and is crossing the \(x \)-axis at the peak and low point of Graph A. Note, also, Graph C cannot be the graph of the derivative of B, because, for example, C is negative to the left of \(x = 0 \) where Graph B is increasing. Graph B, however, can be the graph of the derivative of C—once again, by checking the sign of B when Graph C is increasing or decreasing, and looking for zeros of B when graph C has a peak or a valley. Thus, Graph A is \(g \), Graph C is \(g' \), and Graph B is \(g'' \).