7. [6 points] Consider the function $W(t)=3 \ln \left(\sin (t)^{2}+2\right)$. Write down the limit definition of $W^{\prime}(\pi)$. (You do not need to estimate or compute the derivative.)
Solution: Using the limit definition, we have

$$
W^{\prime}(\pi)=\lim _{h \rightarrow 0} \frac{3 \ln \left(\sin (\pi+h)^{2}+2\right)-3 \ln \left(\sin \left(\pi^{2}\right)+2\right)}{h} .
$$

8. [9 points] The three graphs labeled A, B, and C below depict a function g along with its first and second derivatives $\left(g^{\prime}\right.$ and $\left.g^{\prime \prime}\right)$. Determine which is which.

Your answer to parts (a)-(c) should be a single legible capital letter (A, B, or C).
Solution: A
a. [2 points] The graph of g is labeled \qquad .

Solution: C
b. [2 points] The graph of g^{\prime} is labeled \qquad .

Solution: B
c. [2 points] The graph of $g^{\prime \prime}$ is labeled \qquad .
d. [3 points] Briefly explain your reasoning.

Solution: Graph A cannot be the derivative of either B or C, because Graph A is positive for $x<0$ and both Graphs B and C have intervals where the function is decreasing for $x<0$. Thus, Graph A must be g. Graph C is positive where Graph A is increasing, negative where Graph A is decreasing and is crossing the x-axis at the peak and low point of Graph A. Note, also, Graph C cannot be the graph of the derivative of B, because, for example, C is negative to the left of $x=0$ where Graph B is increasing. Graph B, however, can be the graph of the derivative of C-once again, by checking the sign of B when Graph C is increasing or decreasing, and looking for zeros of B when graph C has a peak or a valley. Thus, Graph A is g, Graph C is g^{\prime}, and Graph B is $g^{\prime \prime}$.

