4. [10 points] Before the industrial era, the carbon dioxide $\left(\mathrm{CO}_{2}\right)$ level in the air in Ann Arbor was relatively stable with small seasonal fluctuations caused by plants absorbing CO_{2} and producing oxygen in its place. Typically, on March 1 , the CO_{2} concentration reached a high of 270 parts per million (ppm), and on September 1, the concentration was at a low of 262 ppm. Let $G(t)$ be the CO_{2} level t months after January 1 .
a. [5 points] Assuming that $G(t)$ is periodic and sinusoidal, sketch a neat, well-labeled graph of G with $t=0$ corresponding to January 1 .

b. [5 points] Determine an explicit expression for G, corresponding to your sinusoidal graph above.
Solution: The function G, being a periodic, sinusiodal function, can be written in the form $G(t)=A \cos (B(t-h))+k$. Here A is amplitude, B is $2 \pi /($ period $), h$ is the horizontal shift, and k is the coordinate of the midline. The high point of the graph is on March 1 which corresponds to $t=2$, so our horizontal shift will be two units to the right meaning $h=2$. The midline is half way between the high and low values, so $k=(270+262) / 2=266$. The period is 12 , so $B=2 \pi / 12=\pi / 6$. The amplitude is half of the difference between the high and low values, so $A=(270-262) / 2=4$.
Putting all the pieces together we have

$$
G(t)=4 \cos \left(\frac{\pi}{6}(t-2)\right)+266
$$

