5. [10 points] Electric cars need large amounts of energy to operate. Most types of batteries, including those found in electric cars, have reduced capacities when discharged at higher rates. For the lithium-ion batteries used in the newest electric cars, this relationship can be expressed by the equation $C=f(I)=\frac{K}{I^{n}}$ where C is the working capacity of the battery in amp hours (Ah) given a discharge rate of I (with $n>1$) measured in amps (A). The constant $K>0$ is the rated capacity of the battery.
a. [5 points] Write a formula for the derivative of C at $I=3$ using the limit definition of the derivative. You do not need to evaluate or simplify this expression.
Solution: The limit definition of the derivative in this case is

$$
\begin{aligned}
\frac{d C}{d I}(3) & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{K /(3+h)^{n}-K / 3^{n}}{h}
\end{aligned}
$$

b. [3 points] Is C increasing or decreasing at $I=3$? Justify your answer.

Solution: The capacity C is decreasing at $I=3$. To see this, look at the expression for the slope of the secant line on C between $I=3$ and $I=3+h$ for small h :

$$
\frac{K /(3+h)^{n}-K / 3^{n}}{h} .
$$

The expression is negative if $h>0$ because $K /(3+h)^{n}<K / 3^{n}$.
The expression is also negative if $h<0$ because $K /(3+h)^{n}>K / 3^{n}$.
Since all of the secant lines near $I=3$ have negative slope, the derivative, which is a limit of the slopes of secant lines, must also be negative.
c. [2 points] What is the concavity of the graph of C at $I=3$? Justify your answer.

Solution: The concavity of the graph of C at $I=3$ is concave up. As stated in the problem, the capacity C is of the form $C=\frac{K}{I^{n}}$. This function is a scalar multiple of the power function I^{-n} which is concave up for $I>0$ as long as $n>0$.
Another approach is to use the power rule to differentiate the function twice. Starting with $C=f(I)=K I^{-n}$, we have

$$
f^{\prime}(I)=-n K I^{-n-1}
$$

and

$$
f^{\prime \prime}(I)=(-n)(-n-1) K I^{-n-2}=n(n+1) K I^{-n-2} .
$$

Now for $I>0, f^{\prime \prime}(I)>0$ meaning $C=f(I)$ is concave up.

