6. [11 points] Aziza and Zainab are former Math 115 students at a prestigious weather forecasting company near Cloudytown, MI. Each using different meteorological instruments, they've recorded the rainfall over Cloudytown during a storm. They've let $F(t)$ be the total rainfall, in inches, $t$ hours after the start of the storm. They collected the following data.

Aziza's data: $F(0)=0, F(1)=0.3$, and $F(2)=0.5$.
Zainab's data: $F^{\prime}(0)=0.6, F^{\prime}(1)=0.7$, and $F^{\prime}(2)=0.3$.
a. [4 points] Use Aziza's data (and not Zainab's data) to estimate how quickly the rain was falling, in inches per hour, at the start of the storm (time $t=0$ ) and after one hour $(t=1)$.

Solution: At the start of the storm, the rainfall rate is $F^{\prime}(0)$ which can be approximated by the average rate of change of $F$ between $t=0$ and $t=1$ :

$$
F^{\prime}(0) \approx \frac{F(1)-F(0)}{1-0}=0.3 .
$$

Similarly, the rainfall rate after one hour is approximated by

$$
F^{\prime}(1) \approx \frac{F(2)-F(1)}{2-1}=0.2 .
$$

(NOTE: Several answers are acceptable for the second part.)

$$
t=0: \underline{0.3 \mathrm{in} / \mathrm{hr}} \quad t=1: 0.2 \mathrm{in} / \mathrm{hr}
$$

b. [4 points] (True or False) Circle "T" (True) or "F" (False) for each of the statements below.

- Assuming all the data gathered was correct, throughout the second hour of the storm it was raining at a rate of about 0.7 inches per hour. F
- Assuming all the data gathered was correct, during the first hour of the storm rainfall slowed down and later sped up again.

T

- Either Aziza's instrument or Zainab's instrument must be faulty because their measurements give different values for $F^{\prime}(0)$ and $F^{\prime}(1)$. F
- Assuming all the data gathered was correct, since $F^{\prime}(0)=0.6$ we know that about 0.6 inches of rain fell in the first hour.
c. [3 points] Give a practical interpretation of $F^{\prime}(0)=0.6$ that begins, "During the first five minutes of the storm...".

Solution: The equation $F^{\prime}(0)=0.6$ means the rainfall rate is $0.6 \mathrm{in} / \mathrm{hr}$ at the beginning of the storm. There are twelve five minute periods in an hour, so this rate is equivalent to 0.05 inches per 5 minutes. This means our interpretation should be
"During the first five minutes of the storm, approximately 0.05 inches of rain fell."

