1. [12 points] For each part below, give an explicit formula for a function which satisfies the given properties, if one exists. If such a function does not exist, explain why. Be sure to clearly indicate your final answer for each part.

a. [3 points] A continuous function, \(f \), which is not differentiable.

\[\text{Solution:}\] The function \(f(x) = |x| \) is continuous, but not differentiable. The function is continuous as it can be drawn without picking up one’s pencil, but not differentiable because there is a corner on the graph at the point \((0, 0)\).

b. [3 points] A cubic polynomial, \(p \), with two \(x \)-intercepts.

\[\text{Solution:}\] The function \(p(x) = x^2(x - 1) = x^3 - x^2 \) is a cubic polynomial with \(x \)-intercepts at \(x = 0, 1 \).

c. [3 points] A continuous function, \(c \), satisfying \(\lim_{x \to 0^+} c(x) = -1 \) and \(\lim_{x \to 0^-} c(x) = 1 \).

\[\text{Solution:}\] The function described here does not exist. If \(\lim_{x \to 0^+} c(x) = -1 \) and \(\lim_{x \to 0^-} c(x) = 1 \), then \(\lim_{x \to 0} c(x) \) does not exist since the right and left hand limits are not equal. The function \(c(x) \) is continuous at zero means the limit as \(x \to 0 \) exists and equals \(c(0) \). If the right hand limit and the left hand limit are not the same, \(\lim_{x \to 0} c(x) \) does not exist, and so \(c(x) \) cannot be continuous at \(x = 0 \).

d. [3 points] A rational function, \(r \), with a vertical asymptote at \(x = 1 \) and a horizontal asymptote at \(y = 1 \).

\[\text{Solution:}\] The function \(r(x) = \frac{x}{x - 1} \) has a vertical asymptote at \(x = 1 \) and a horizontal asymptote at \(y = 1 \).