5. [6 points] Find a number $k$ so that the following function is continuous on any interval.

$$
j(t)=\left\{\begin{array}{cc}
(t+4)^{3} & t<-2 \\
k t & t \geq-2
\end{array}\right.
$$

Using your value of $k$, explain why this function is continuous on any interval.
Solution: On intervals not containing $t=-2$, this function is continuous since the functions $(t+4)^{3}$ and $k t$ are both polynomials, and thus continuous, regardless of the value of $k$. So we must find the value of $k$ which makes $j(t)$ continuous at $t=-2$. So we set

$$
\lim _{t \rightarrow-2^{-}} j(t)=(-2+4)^{3}=-2 k=\lim _{t \rightarrow-2^{+}} j(t) .
$$

Solving this, we get $k=-4$. Now for any interval containing $t=-2$ we have that $j(t)$ is continuous.
6. [5 points] Using the limit definition of the derivative, write an explicit expression for the derivative of the function $E(x)=x^{\cos x}$ at $x=2$. Do not try to calculate this derivative.
Solution:

$$
E^{\prime}(2)=\lim _{h \rightarrow 0} \frac{(2+h)^{\cos (2+h)}-2^{\cos 2}}{h}
$$

