1. [10 points] The population of squirrels in Ann Arbor oscillates sinusoidally between a low of 4.1 thousand on January 1 and a high of 5.4 thousand on July 1. Let $P(t)$ be the population, in thousands, of squirrels in Ann Arbor t months since January 1.
a. [5 points] On the axes below, graph the function P, showing at least one full period. Remember to label your axes and make sure important features of the graph are clear.

b. [5 points] Use your graph to find a formula for $P(t)$.

Solution: From the problem, we know that P is at its minimum when $t=0$, so $-\cos$ is the natural choice of function to use. We need the appropriate values of A, B and C in $P(t)=-A \cos (B t)+C$. We are given that the period is 12 months, so $B=2 \pi / 12=\pi / 6$. A is the amplitude, which is half the distance between the maximum and minimum values, i.e. $A=(5.4-4.1) / 2=0.65$. The value for C is the vertical shift, which is the average of the maximum and minimum. That is, $C=(5.4+4.1) / 2=4.75$.

$$
P(t)=\quad-0.65 \cos \left(\frac{\pi t}{6}\right)+4.75
$$

