4. [12 points] The Dow Jones Industrial Average (DJIA) is a stock market index which measures how the stocks of 30 large publicly-owned companies perform during a given period of time. On September 27, 2012 at 11:30am the DJIA was 13,420 and at 1:30pm, the DJIA was 13,520 . Suppose $A=h(t)$ gives the value of the DJIA t hours after 9:00am on September 27, 2012 with $0 \leq t \leq 8$.
a. [4 points] Using the information given above approximate A using a linear function, $\ell(t)$. Write an expression for $\ell(t)$.

Solution: We are given $\ell(2.5)=13420$ and $\ell(4.5)=13520$. So the slope is
$\frac{13,520-13,420}{4.5-2.5}=\frac{100}{2}=50$. Now we can find our vertical intercept, b, by plugging in
a point and solving: $13,420=50 \cdot 2.5+b$ so $b=13,295$.

$$
\ell(t)=\begin{aligned}
& 50 t+13,295 \\
& \hline
\end{aligned}
$$

b. [4 points] Your friend tells you that an exponential function would be more accurate in modeling A. If $g(t)$ is an exponential function which approximates A, what is the hourly growth rate of $g(t)$? What was the value of the DJIA at 2:30pm on September 27, 2012 according to this model?
Solution: 11:30 and 1:30 are two hours apart, so if a is the growth factor, $13420 a^{2}=$ 13520 , so $a \approx 1.0037$. So the growth rate is 0.0037 , or 0.37%.
By $2: 30$, the DJIA will grow by one more growth factor, so it will be at $(13520)(1.0037) \approx$ 13570.3
growth rate $=\quad 0.37 \%$ value of DJIA at $2: 30 \mathrm{pm}=$ \qquad
c. [4 points] In the end you realize the best model for A is a function of the form

$$
p(t)=t^{k}+b
$$

where k and b are constants. You also find out that at 9 am on September 27, the DJIA was actually 13,402 . Find values of k and b so that $p(t)$ approximates A.
Solution: We are given $p(0)=13402$, so $b=13402$.
We can use either of the other two points to get a value for k. Using the point at $t=2.5$, we get

$$
\begin{gathered}
2.5^{k}+13402=13420 . \\
2.5^{k}=18 \\
k \ln 2.5=\ln 18
\end{gathered}
$$

This gives $k \approx 3.154$ (if we used the other point, we would get $k \approx 3.172$).

$$
k=\begin{aligned}
& 3.154
\end{aligned} b=
$$

