7. [13 points] f is a continuous, differentiable function defined for all real numbers. Some values of f and its derivative are given in the table below.

x	0	1	2	3	4	5	6	7
$f(x)$	-11.2	-4.0	-1.1	-0.5	-0.1	2.0	7.9	19.6
$f^{\prime}(x)$	9.9	4.7	1.4	0.2	0.9	2.1	5.9	11.7

a. [4 points] Estimate the derivative of f at $x=5,6$, and 7 , and fill in the remainder of the table.
Solution: Using left-hand estimates,
$f^{\prime}(5) \approx \frac{2.0-(-0.1)}{5-4}=2.1$
$f^{\prime}(6) \approx 7.9-2.0=5.9$
$f^{\prime}(7) \approx 19.6-7.9=11.7$.
b. [2 points] Estimate $f^{\prime \prime}(1)$ using the data given.

Solution: We can use a left-hand estimate, a right-hand estimate, or find both and average them:
Left: $4.7-9.9=-5.2$
Right: $1.4-4.7=-3.3$
Average: $\frac{-5.2-3.3}{2}=-4.25$
c. [4 points] Assuming the concavity of f doesn't change on the interval $5 \leq x \leq 7$, is the graph of f concave up or concave down on that interval? Explain.
Solution: $\quad f$ is concave up on the interval $5 \leq x \leq 7$, because our estimates for the derivative are increasing on this interval.
d. [3 points] Using your answer from part (c), is your approximation for $f^{\prime}(7)$ an overestimate or an underestimate? Explain.

Solution: Our approximation for $f^{\prime}(7)$ is an underestimate. Our estimate was the slope of a secant line on the left, which will be smaller than the slope of the tangent line since f is concave up.

