8. [14 points] Your pet bird is flying in a straight path toward you and away from you for a minute. After t seconds, she is $f(t)$ feet away from you, where

$$
f(t)=\frac{-t(t-20)(t-70)}{500}+20, \quad 0 \leq t \leq 60 .
$$

A graph of $y=f(t)$ is shown here.

a. [3 points] Without doing any calculations, determine which is greater: the average velocity of the bird over the entire minute, or her instantaneous velocity after 30 seconds. Explain, referring to the graph.

Solution: The slope of the secant line from $t=0$ to $t=60$ is the average velocity over the minute and slope of the tangent line at $t=30$ is the instantaneous velocity after 30 seconds. If you draw these lines on the graph, you can see that the tangent line clearly has a larger slope. Thus, her instantaneous velocity after 30 seconds is greater than her average velocity over the entire minute.
b. [3 points] Calculate the exact value of the average velocity of the bird over the entire minute.
Solution: Average velocity $=\frac{f(60)-f(0)}{60-0}=\frac{68-20}{60}=0.8 \mathrm{ft} / \mathrm{s}$
8. (continued) The formula for f and its graph are repeated below for your convenience.

$$
f(t)=\frac{-t(t-20)(t-70)}{500}+20, \quad 0 \leq t \leq 60 .
$$

c. [4 points] Write an explicit expression for the velocity of the bird at time t using the limit definition of velocity. Final answers containing the letter f will receive no credit. Do not evaluate your expression.
Solution: $\quad f^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\left(\frac{-(t+h)(t+h-20)(t+h-70)}{500}+20\right)-\left(\frac{-t(t-20)(t-70)}{500}+20\right)}{h}$
d. [4 points] After a minute, you scare the bird, and she flies away at 9 feet/sec. Write a formula for a continuous function $f(t)$ describing the distance between you and the bird for $0 \leq t \leq 180$.
Solution: After 60 seconds, the bird is $f(60)=68 \mathrm{ft}$ away. So we want to find a formula for a line with slope 9 passing through $(60,68)$. Plugging in and solving for the vertical intercept b, we get $68=9 \cdot 60+b$. So $b=-472$. We can then write this as a piecewise function:
$f(t)= \begin{cases}\frac{-t(t-20)(t-70)}{500}+20 & 0 \leq t \leq 60 \\ 9 t-472 & 60<t \leq 180\end{cases}$

