4. [7 points] After the success of his new bacon-flavored soda, Louis wants to try making a flavor that customers will find more refreshing in the hot summer months. Louis notices daily sales of his new spearmint soda vary seasonally. Sales reach a high of $\$ 300$ around August 1 and a low of $\$ 120$ around February 1. Suppose that daily sales of the soda (in dollars) can be modeled by a sinusoidal function $S(t)$ where t is the time in months since January 1. Note that August 1 is seven months after January 1. You do not need to show work for this problem.
a. [2 points] What are the period and amplitude of the function $S(t)$?

Period $=$ \qquad 12

Amplitude $=$ \qquad 90
b. [5 points] Write a formula for the function $S(t)$.

Solution:
$S(t)=-90 \cos \left(\frac{2 \pi}{12}(t-1)\right)+210=90 \sin \left(\frac{2 \pi}{12}(t-4)\right)+210=90 \cos \left(\frac{2 \pi}{12}(t-7)\right)+210$
(There are other possible answers.)
5. [6 points] For which value(s) of a is the following function continuous? Show all of your work.

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { for } x<3 \\ a x^{2}+2 x+15 & \text { for } x \geq 3\end{cases}
$$

Solution: The function $f(x)$ is continuous everywhere except possibly at $x=3$.
First find the left-hand limit at $x=3$:

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x+3)(x-3)}{x-3}=\lim _{x \rightarrow 3^{-}} x+3=6
$$

Then find the right-hand limit at $x=3$:

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} a x^{2}+2 x+15=9 a+21
$$

We need the left and right limits at 3 to be equal. So we solve $6=9 a+21$ to get $a=-\frac{5}{3}$. The function with $a=-\frac{5}{3}$ is continuous at $x=3$ because $\lim _{x \rightarrow 3} f(x)=6$ and $f(3)=6$.

