8. [12 points] In Ann Arbor, the average property value P, in dollars per square foot, can be modeled as a function of the distance x, in miles, you are away from the city center. This relationship can be written $P=g(x)$. Below is a table containing information about $g(x)$. Use the information in the table to answer the parts of this question.

x	0.1	0.2	0.3	0.4	0.5
$g(x)$	200	162	142	130	119
$g^{\prime}(x)$	-401	-298	-160	-115	-118

a. [3 points] Estimate $g^{\prime}(0.15)$ using only values of $g(x)$ from the table.

Solution:

$$
g^{\prime}(0.15) \approx \frac{g(0.2)-g(0.1)}{0.2-0.1}=\frac{162-200}{0.1}=-380
$$

b. [3 points] Estimate $g^{\prime \prime}(0.45)$ using only values of $g^{\prime}(x)$ from the table.

Solution:

$$
g^{\prime \prime}(0.45) \approx \frac{g^{\prime}(0.5)-g^{\prime}(0.4)}{0.5-0.4}=\frac{-118-(-115)}{0.1}=-30
$$

c. [3 points] Assuming the concavity of $g(x)$ does not change on the interval $0.1<x<0.3$, do you expect $g(x)$ to be concave up, concave down, or neither over this interval? Explain.

I expect $g(x)$ to be concave up_because ...
Solution: $\ldots g^{\prime}(x)$ is increasing on the interval $0.1<x<0.3$.
$\ldots g(x)$ decreases more between $x=0.1$ and $x=0.2$ than between $x=0.2$ and $x=0.3$.
d. [3 points] Write a sentence expressing the meaning of

$$
g^{\prime}(0.3)=-160
$$

which could be understood by someone who knows no calculus. The beginning of the sentence is given below.

If I am 0.3 miles from the center of Ann Arbor looking at properties and I travel 0.05 miles toward the city center, ...
Solution:average property values will increase by about 8 dollars per square foot.

