3. [9 points] Consider the function \(h \) defined by

\[
h(x) = \begin{cases}
 \frac{60(x^2 - x)}{(x^2 + 1)(3 - x)} & \text{for } x < 2 \\
 c & \text{for } x = 2 \\
 5e^{ax} - 1 & \text{for } x > 2
\end{cases}
\]

where \(a \) and \(c \) are constants.

a. [5 points] Find values of \(a \) and \(c \) so that both of the following conditions hold.
 - \(\lim_{x \to 2} h(x) \) exists.
 - \(h(x) \) is not continuous at \(x = 2 \).

 Note that this problem may have more than one correct answer. You only need to find one value of \(a \) and one value of \(c \) so that both conditions above hold. Remember to show your work clearly.

 Answer: \(a = \) __________ and \(c = \) __________

b. [2 points] Determine \(\lim_{x \to -\infty} h(x) \). If the limit does not exist, write DNE.

 Answer: \(\lim_{x \to -\infty} h(x) = \) __________

c. [2 points] Find all vertical asymptotes of the graph of \(h(x) \). If there are none, write NONE.

 Answer: Vertical asymptote(s): _______________