3. [9 points] Consider the function h defined by

$$
h(x)= \begin{cases}\frac{60\left(x^{2}-x\right)}{\left(x^{2}+1\right)(3-x)} & \text { for } x<2 \\ c & \text { for } x=2 \\ 5 e^{a x}-1 & \text { for } x>2\end{cases}
$$

where a and c are constants.
a. [5 points] Find values of a and c so that both of the following conditions hold.

- $\lim _{x \rightarrow 2} h(x)$ exists.
- $h(x)$ is not continuous at $x=2$.

Note that this problem may have more than one correct answer. You only need to find one value of a and one value of c so that both conditions above hold. Remember to show your work clearly.

Answer: $a=$ \qquad and $c=$ \qquad
b. [2 points] Determine $\lim _{x \rightarrow-\infty} h(x)$. If the limit does not exist, write DNE.

Answer: $\lim _{x \rightarrow-\infty} h(x)=$ \qquad
c. [2 points] Find all vertical asymptotes of the graph of $h(x)$. If there are none, write None.

Answer: Vertical asymptote(s):

