3. [9 points] Consider the function h defined by

$$
h(x)= \begin{cases}\frac{60\left(x^{2}-x\right)}{\left(x^{2}+1\right)(3-x)} & \text { for } x<2 \\ c & \text { for } x=2 \\ 5 e^{a x}-1 & \text { for } x>2\end{cases}
$$

where a and c are constants.
a. [5 points] Find values of a and c so that both of the following conditions hold.

- $\lim _{x \rightarrow 2} h(x)$ exists.
- $h(x)$ is not continuous at $x=2$.

Note that this problem may have more than one correct answer. You only need to find one value of a and one value of c so that both conditions above hold. Remember to show your work clearly.

Solution: In order for $\lim _{x \rightarrow 2} h(x)$ to exist, it must be true that $\lim _{x \rightarrow 2^{-}} h(x)=\lim _{x \rightarrow 2^{+}} h(x)$. Now $\lim _{x \rightarrow 2^{-}} h(x)=\frac{60\left(2^{2}-2\right)}{\left(2^{2}+1\right)(3-2)}=24$ and $\lim _{x \rightarrow 2^{+}} h(x)=5 e^{2 a}-1$. So it follows that $5 e^{2 a}-1=24$. Solving for a, we have

$$
\begin{aligned}
5 e^{2 a}-1 & =24 \\
e^{2 a} & =5 \\
2 a & =\ln (5) \\
a & =\ln (5) / 2 \approx 0.804 .
\end{aligned}
$$

When $a=\ln (5) / 2, \lim _{x \rightarrow 2} h(x)=5 e^{(\ln (5) / 2) * 2}=5 e^{\ln (5)}-1=24$. So, h is not continuous at $x=2$ as long as $\lim _{x \rightarrow 2} h(x) \neq h(2)$. Since $h(2)=c$, we can choose c to be any number other than 24 .

Answer: $\quad a=\ldots \ln (5) / 2 \quad$ and $c=7$ (or any value other than 24)
b. [2 points] Determine $\lim _{x \rightarrow-\infty} h(x)$. If the limit does not exist, write DNE.

Solution: By looking at the rational function

$$
\frac{60\left(x^{2}-x\right)}{\left(x^{2}+1\right)(3-x)}=\frac{60\left(x^{2}-x\right)}{-x^{3}+3 x^{2}-x+3},
$$

(the relevant piece of the function here) we see that as $x \rightarrow-\infty, h(x)$ approaches 0 .

$$
\text { Answer: } \lim _{x \rightarrow-\infty} h(x)=\frac{0}{\square}
$$

c. [2 points] Find all vertical asymptotes of the graph of $h(x)$. If there are none, write None.

Answer: Vertical asymptote(s):
None

