3. [9 points] Consider the function h defined by

$$h(x) = \begin{cases} \frac{60(x^2 - x)}{(x^2 + 1)(3 - x)} & \text{for } x < 2\\ c & \text{for } x = 2\\ 5e^{ax} - 1 & \text{for } x > 2 \end{cases}$$

where a and c are constants.

- **a**. [5 points] Find values of a and c so that both of the following conditions hold.
 - $\lim_{x \to 2} h(x)$ exists.
 - h(x) is not continuous at x = 2.

Note that this problem may have more than one correct answer. You only need to find one value of a and one value of c so that both conditions above hold. Remember to show your work clearly.

Solution: In order for $\lim_{x \to 2} h(x)$ to exist, it must be true that $\lim_{x \to 2^-} h(x) = \lim_{x \to 2^+} h(x)$. Now $\lim_{x \to 2^-} h(x) = \frac{60(2^2 - 2)}{(2^2 + 1)(3 - 2)} = 24$ and $\lim_{x \to 2^+} h(x) = 5e^{2a} - 1$. So it follows that $5e^{2a} - 1 = 24$. Solving for a, we have $5e^{2a} - 1 = 24$.

$$2a = \ln(5)$$

 $a = \ln(5)/2 \approx 0.804.$

When $a = \ln(5)/2$, $\lim_{x\to 2} h(x) = 5e^{(\ln(5)/2)*2} = 5e^{\ln(5)} - 1 = 24$. So, h is not continuous at x = 2 as long as $\lim_{x\to 2} h(x) \neq h(2)$. Since h(2) = c, we can choose c to be any number other than 24.

Answer: $a = \frac{\ln(5)/2}{2}$ and $c = \frac{7}{(\text{or any value other than } 24)}$

b. [2 points] Determine $\lim_{x \to -\infty} h(x)$. If the limit does not exist, write DNE.

Solution: By looking at the rational function

$$\frac{60(x^2 - x)}{(x^2 + 1)(3 - x)} = \frac{60(x^2 - x)}{-x^3 + 3x^2 - x + 3},$$

(the relevant piece of the function here) we see that as $x \to -\infty$, h(x) approaches 0.

Answer: $\lim_{x \to -\infty} h(x) =$ _____0

c. [2 points] Find all vertical asymptotes of the graph of h(x). If there are none, write NONE.

Answer: Vertical asymptote(s): <u>NONE</u>