8. [6 points] Given below is the graph of a sinusoidal function $R(x)$.

Find a possible formula for $R(x)$.
Solution: The graph shown above is of a sinusoidal function with amplitude 4, period 3, and midline $y=-2$. We first consider the graph of

$$
y=4 \cos \left(\frac{2 \pi}{3} x\right)-2
$$

This graph has the proper amplitude, period, and midline. We shift this graph over to the right 1 unit to obtain the graph of $y=R(x)$. Thus, one possible formula for $R(x)$ is given by

$$
R(x)=4 \cos \left(\frac{2 \pi}{3}(x-1)\right)-2 .
$$

Answer: $\quad R(x)=4 \cos \left(\frac{2 \pi}{3}(x-1)\right)-2$
9. [4 points] The table below gives several values of a function $w(x)$.

x	4.5	4.9	4.99	5	5.01	5.1	5.5
$w(x)$	-0.879	-0.154	-0.015	0	0.060	0.630	3.750

Use the information in the table above to estimate the following limit.

$$
\lim _{h \rightarrow 0^{-}} \frac{w(5+h)}{h}
$$

Clearly show any computations that you use to make this estimate.
Solution: The left limit can be approximated by $w(5+h) / h$ for small negative values of h. The table of values provided for w allows us to compute this when $h=-0.1$ and when $h=-0.01$. The results are shown in the table below.

h	$\frac{w(5+h)}{h}$
-0.1	$\frac{w(4.9)}{-0.1}=1.54$
-0.01	$\frac{w(4.99)}{-.01}=1.5$

Using these values, we estimate that the desired left-hand limit is approximately 1.5.

$$
\text { Answer: } \lim _{h \rightarrow 0^{-}} \frac{w(5+h)}{h} \approx \xrightarrow{1.5}
$$

