7. [12 points] Phillip Asafy and Genevieve Omicks both enjoy hot chocolate when it's cool outside. They made a few measurements, and these appear in the table below.

P (respectively G) is Phil's (respectively Gen's) consumption
of hot chocolate (in quarts, measured to the nearest tenth
a quart) in a month when the average daily high temperatu
is H (in degrees Celsius, measured to the nearest degree).

on	$H(^{\circ}C)$	P (quarts)	G (quarts)
of	3	16.1	13.3
ıre	7	12.8	11.6
	15	8.0	6.5

a. [8 points] Based on this data, could either student's monthly hot chocolate consumption be reasonably modeled as a linear function of average daily high temperature? An exponential function? Neither? Carefully justify your answer in the space below. (Hint: At least one of these can be modeled by a linear or an exponential function!)

Answers: Circle <u>one</u> choice for each student.

Phil's consumption P :	linear	exponential	neither linear nor exponential
Gen's consumption G :	linear	exponential	neither linear nor exponential

b. [4 points] For this investigation, their friend Maddy measures temperature in degrees Fahrenheit, and she measures her hot chocolate consumption in cups. She finds a function M(f) which is the number of cups of hot chocolate she consumes in a month when the average daily high temperature is f degrees Fahrenheit. If Q(H) is the number of quarts of hot chocolate Maddy consumes when the average monthly temperature is H degrees Celsius, write a formula for Q(H) in terms of M and H. Recall that there are 4 cups in a quart and that the conversion from Fahrenheit to Celsius is given by $y = \frac{5}{9}(x - 32)$ (where $y^{\circ}C$ and $x^{\circ}F$ describe the same temperature).