7. [12 points] Phillip Asafy and Genevieve Omicks both enjoy hot chocolate when it's cool outside. They made a few measurements, and these appear in the table below.

P (respectively G) is Phil's (respectively Gen's) consumption	$H\left({ }^{\circ} C\right)$	P (quarts)	G (quarts)	
of hot chocolate (in quarts, measured to the nearest tenth of	3	16.1	13.3	
a quart) in a month when the average daily high temperature	7	12.8	11.6	
	is H (in degrees Celsius, measured to the nearest degree).	15	8.0	6.5

a. [8 points] Based on this data, could either student's monthly hot chocolate consumption be reasonably modeled as a linear function of average daily high temperature? An exponential function? Neither? Carefully justify your answer in the space below. (Hint: At least one of these can be modeled by a linear or an exponential function!)

Answers: Circle one choice for each student.
Phil's consumption P linear exponential neither linear nor exponential
Gen's consumption G : linear exponential neither linear nor exponential
b. [4 points] For this investigation, their friend Maddy measures temperature in degrees Fahrenheit, and she measures her hot chocolate consumption in cups. She finds a function $M(f)$ which is the number of cups of hot chocolate she consumes in a month when the average daily high temperature is f degrees Fahrenheit. If $Q(H)$ is the number of quarts of hot chocolate Maddy consumes when the average monthly temperature is H degrees Celsius, write a formula for $Q(H)$ in terms of M and H.
Recall that there are 4 cups in a quart and that the conversion from Fahrenheit to Celsius is given by $y=\frac{5}{9}(x-32)$ (where $y^{\circ} C$ and $x^{\circ} F$ describe the same temperature).

Answer: $Q(H)=$ \qquad

