5. [8 points] Remember to show your work carefully throughout this problem.

Algie and Cal go on a picnic, arriving at 12:00 noon.
a. [5 points] Five minutes after they arrive, they notice that 5 ants have joined their picnic. More ants soon appear, and after careful study, they determine that the number of ants appears to be increasing by 20% every minute. Find a formula for a function $A(t)$ modeling the number of ants present at the picnic t minutes past noon for $t \geq 5$.
Solution: Since this is an exponential function, there are constants c and b such that $A(t)=c b^{t}$. We can see immediately that $b=1.2$. We can then use the fact that we know that $A(5)=5$ to find $c: c(1.2)^{5}=5$, so $c=5 /(1.2)^{5}$, which is approximately 2.01. Alternatively, we can use a horizontal shift to say that this is $5(1.2)^{t-5}$.

$$
\text { Answer: } \quad A(t)=\frac{5(1.2)^{(t-5)}=\frac{5}{1.2^{5}}(1.2)^{t}}{}
$$

b. [3 points] Algie and Cal notice that their food is, unfortunately, also attracting flies. The number of flies at their picnic t minutes after noon can be modeled by the function $g(t)=1.8(1.25)^{t}$. Algie and Cal decide they will end their picnic when there are at least 1000 flies. How long will their picnic last? Include units.

Solution: We wish to find t such that $1.8(1.25)^{t}=1000$. Then

$$
\begin{aligned}
1.8(1.25)^{t} & =1000 \\
\ln \left(1.8(1.25)^{t}\right) & =\ln (1000) \\
\ln (1.8)+t \ln (1.25) & =\ln (1000) \\
t \ln (1.25) & =\ln (1000)-\ln (1.8) \\
t & =\ln (1000 / 1.8) / \ln (1.25) \approx 28.3 .
\end{aligned}
$$

So they end their picnic about 28.3 minutes after noon (when it started).

Answer: About 28.3 minutes

6. [6 points] Consider the function

$$
R(w)=2+(\ln (w))^{\cos (w)} .
$$

Use the limit definition of the derivative to write an explicit expression for $R^{\prime}(\pi)$.
Your answer should not involve the letter R. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: $R^{\prime}(\pi)=\quad \lim _{h \rightarrow 0} \frac{\left(2+(\ln (\pi+h))^{\cos (\pi+h)}\right)-\left(2+(\ln (\pi))^{\cos (\pi)}\right)}{h}$

