5. [8 points] Remember to show your work carefully throughout this problem.
Algie and Cal go on a picnic, arriving at 12:00 noon.

a. [5 points] Five minutes after they arrive, they notice that 5 ants have joined their picnic. More ants soon appear, and after careful study, they determine that the number of ants appears to be increasing by 20% every minute. Find a formula for a function \(A(t) \) modeling the number of ants present at the picnic \(t \) minutes past noon for \(t \geq 5 \).

Solution: Since this is an exponential function, there are constants \(c \) and \(b \) such that \(A(t) = cb^t \). We can see immediately that \(b = 1.2 \). We can then use the fact that we know that \(A(5) = 5 \) to find \(c \): \(c(1.2)^5 = 5 \), so \(c = 5/(1.2)^5 \), which is approximately 2.01. Alternatively, we can use a horizontal shift to say that this is \(5(1.2)^{t-5} \).

Answer: \(A(t) = 5(1.2)^{(t-5)} \)

b. [3 points] Algie and Cal notice that their food is, unfortunately, also attracting flies. The number of flies at their picnic \(t \) minutes after noon can be modeled by the function \(g(t) = 1.8(1.25)^t \). Algie and Cal decide they will end their picnic when there are at least 1000 flies. How long will their picnic last? Include units.

Solution: We wish to find \(t \) such that \(1.8(1.25)^t = 1000 \). Then
\[
1.8(1.25)^t = 1000
\]
\[
\ln(1.8(1.25)^t) = \ln(1000)
\]
\[
\ln(1.8) + t \ln(1.25) = \ln(1000)
\]
\[
t \ln(1.25) = \ln(1000) - \ln(1.8)
\]
\[
t = \ln(1000/1.8)/\ln(1.25) \approx 28.3.
\]
So they end their picnic about 28.3 minutes after noon (when it started).

Answer: About 28.3 minutes

6. [6 points] Consider the function
\[
R(w) = 2 + (\ln(w))^{\cos(w)}.
\]
Use the limit definition of the derivative to write an explicit expression for \(R'(\pi) \). Your answer should not involve the letter \(R \). Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer: \(R'(\pi) = \lim_{h \to 0} \frac{2 + (\ln(\pi + h))^{\cos(\pi + h)} - (2 + (\ln(\pi))^{\cos(\pi)})}{h} \)