- **5**. [8 points] Remember to show your work carefully throughout this problem. Algie and Cal go on a picnic, arriving at 12:00 noon.
 - a. [5 points] Five minutes after they arrive, they notice that 5 ants have joined their picnic. More ants soon appear, and after careful study, they determine that the number of ants appears to be increasing by 20% every minute. Find a formula for a function A(t) modeling the number of ants present at the picnic t minutes past noon for $t \ge 5$.

Solution: Since this is an exponential function, there are constants c and b such that $A(t) = cb^t$. We can see immediately that b = 1.2. We can then use the fact that we know that A(5) = 5 to find c: $c(1.2)^5 = 5$, so $c = 5/(1.2)^5$, which is approximately 2.01. Alternatively, we can use a horizontal shift to say that this is $5(1.2)^{t-5}$.

Answer: A(t) =_____ $5(1.2)^{(t-5)} = \frac{5}{1.2^5}(1.2)^t$

b. [3 points] Algie and Cal notice that their food is, unfortunately, also attracting flies. The number of flies at their picnic t minutes after noon can be modeled by the function $g(t) = 1.8(1.25)^t$. Algie and Cal decide they will end their picnic when there are at least 1000 flies. How long will their picnic last? *Include units.*

Solution: We wish to find t such that $1.8(1.25)^t = 1000$. Then $1.8(1.25)^t = 1000$ $\ln(1.8(1.25)^t) = \ln(1000)$ $\ln(1.8) + t \ln(1.25) = \ln(1000)$ $t \ln(1.25) = \ln(1000) - \ln(1.8)$ $t = \ln(1000/1.8) / \ln(1.25) \approx 28.3.$

So they end their picnic about 28.3 minutes after noon (when it started).

Answer: <u>About 28.3 minutes</u>

6. [6 points] Consider the function

$$R(w) = 2 + (\ln(w))^{\cos(w)}.$$

Use the limit definition of the derivative to write an explicit expression for $R'(\pi)$. Your answer should not involve the letter R. Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer:
$$R'(\pi) = \lim_{h \to 0} \frac{\left(2 + (\ln(\pi + h))^{\cos(\pi + h)}\right) - \left(2 + (\ln(\pi))^{\cos(\pi)}\right)}{h}$$