7. [12 points] Phillip Asafy and Genevieve Omicks both enjoy hot chocolate when it's cool outside. They made a few measurements, and these appear in the table below.
P (respectively G) is Phil's (respectively Gen's) consumption of hot chocolate (in quarts, measured to the nearest tenth of a quart) in a month when the average daily high temperature is H (in degrees Celsius, measured to the nearest degree).

$H\left({ }^{\circ} \mathrm{C}\right)$	P (quarts)	G (quarts)
3	16.1	13.3
7	12.8	11.6
15	8.0	6.5

a. [8 points] Based on this data, could either student's monthly hot chocolate consumption be reasonably modeled as a linear function of average daily high temperature? An exponential function? Neither? Carefully justify your answer in the space below.
(Hint: At least one of these can be modeled by a linear or an exponential function!)
Solution: First consider Phil's hot chocolate consumption. Suppose $P=p(H)$. To check whether $p(H)$ could be modeled by a linear function, we compute the average rate of change of p over the intervals $[3,7]$ and $[7,15]$. We have

$$
\frac{p(7)-p(3)}{7-3}=\frac{12.8-16.1}{4}=-0.825 \quad \text { and } \quad \frac{p(15)-p(7)}{15-7}=\frac{8.0-12.8}{8}=-0.6
$$

Since these two average rates of change are quite different, Phil's hot chocolate consumption is not reasonably modeled by a linear function. To check whether $p(H)$ could be modeled by an exponential function, we compute the percent rate of change of $p(H)$ over the intervals $[3,7]$ and $[7,15]$. We have

$$
\left(\frac{p(7)}{p(3)}\right)^{\frac{1}{7-3}}=\left(\frac{12.8}{16.1}\right)^{\frac{1}{4}} \approx 0.9443 \quad \text { and } \quad\left(\frac{p(15)}{p(7)}\right)^{\frac{1}{15-7}}=\left(\frac{8.0}{12.8}\right)^{\frac{1}{8}} \approx 0.9429 .
$$

The difference between these percent rates of change is less than 0.2%, so based on this data, $p(H)$ can be reasonably modeled by an exponential function. In particular, we can check that we obtain the data in the table for P using, for example, $19.2(0.9435)^{H}$
Now consider Gen's hot chocolate consumption. Suppose $G=g(H)$. From the calculations

$$
\frac{g(7)-g(3)}{7-3}=\frac{11.6-13.3}{4}=-0.425 \quad \text { and } \quad \frac{g(15)-g(7)}{15-7}=\frac{6.5-11.6}{8}=-0.6375
$$

we conclude that Gen's hot chocolate consumption is not reasonably modeled by a linear function. From the calculations

$$
\left(\frac{g(7)}{g(3)}\right)^{\frac{1}{7-3}}=\left(\frac{11.6}{13.3}\right)^{\frac{1}{4}} \approx 0.9664 \quad \text { and } \quad\left(\frac{g(15)}{g(7)}\right)^{\frac{1}{15-7}}=\left(\frac{6.5}{11.6}\right)^{\frac{1}{8}} \approx 0.9302
$$

we conclude that Gen's hot chocolate consumption can't be reasonably modeled by an exponential function.
(Note that for the exponential cases we could instead compare, for example, $\left(\frac{p(7)}{p(3)}\right)^{2}$ with $\frac{p(15)}{p(7)}$.)
Answers: Circle one choice for each student.

Phil's consumption $P:$	linear	exponential	neither linear nor exponential
Gen's consumption $G:$	linear	exponential	neither linear nor exponential

b. [4 points] For this investigation, their friend Maddy measures temperature in degrees Fahrenheit, and she measures her hot chocolate consumption in cups. She finds a function $M(f)$ which is the number of cups of hot chocolate she consumes in a month when the average daily high temperature is f degrees Fahrenheit. If $Q(H)$ is the number of quarts of hot chocolate Maddy consumes when the average monthly temperature is H degrees Celsius, write a formula for $Q(H)$ in terms of M and H.
Recall that there are 4 cups in a quart and that the conversion from Fahrenheit to Celsius is given by $y=\frac{5}{9}(x-32)$ (where $y^{\circ} C$ and $x^{\circ} F$ describe the same temperature).
Solution: H degrees Celsius is the same as $\frac{9}{5} H+32$ degrees Fahrenheit, and $M\left(\frac{9}{5} H+32\right)$ gives Maddy's hot chocolate consumption in cups. We divide this quantity by 4 to convert from cups to quarts.

$$
\text { Answer: } Q(H)=\square \frac{M\left(\frac{9}{5} H+32\right)}{4}
$$

